Skip to main content

Advertisement

Log in

Treatment of penicillin with supercritical water oxidation: Experimental study of combined ReaxFF molecular dynamics

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Supercritical water oxidation (SCWO) of penicillin (PCN) was investigated under different operating conditions. The chemical oxygen demand (COD) removal rate could reach 99.4% at 400 °C, 24 MPa, 1min and oxidation coefficient (OC) of 2. Experimental results showed that COD removal had no significant dependence on temperature and pressure variations. By contrast, COD removal could be significantly promoted with OC increasing from 0 to 2.0, but the effect was negligible as the OC further increased; similarly, longer residence time than a definite value seemed to contribute little to COD removal. Initial and deeper degradation pathways of penicillin were proposed based on the reactive force field (ReaxFF) molecular dynamics (MD) simulations. By tracing the evolution of intermediates, the migration routes of S and N during the SCWO process were obtained with H2S and NO2 produced as the corresponding products. Simulation results showed that SCW and oxidant not only accelerated the degradation by producing highly reactive radicals or molecules, but also participated in reactions by serving as H and O sources. Moreover, catalysis of water clusters in C-heteroatom bond cleavage was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Michael, L. Rizzo, C. S. McArdell, C. M. Manaia, C. Merli, T. Schwartz, C. Dagot and D. Fatta-Kassinos, Water Res., 47, 957 (2013).

    Article  CAS  Google Scholar 

  2. J. L. Martinez, Environ. Pollut., 157, 2893 (2009).

    Article  CAS  Google Scholar 

  3. K. Kümmerer, Chemosphere, 75, 417 (2009).

    Article  Google Scholar 

  4. C. Ding and J. He, Appl. Microbiol. Biotechnol., 87, 925 (2010).

    Article  CAS  Google Scholar 

  5. J. M. Cha, S. Yang and K. H. Carlson, J. Chromatogr. A., 1115, 46 (2006).

    Article  CAS  Google Scholar 

  6. J. Altmann, A. S. Ruhl, F. Zietzschmann and M. Jekel, Water Res., 55, 185 (2014).

    Article  CAS  Google Scholar 

  7. H.R. Pouretedal and N. Sadegh, J. Water Process Eng., 1, 64 (2014).

    Article  Google Scholar 

  8. E. A. Serna-Galvis, J. Silva-Agredo, A. L. Giraldo-Aguirre, O. A. Flórez-Acosta and R. A. Torres-Palma, Ultrason. Sonochem., 31, 276 (2016).

    Article  CAS  Google Scholar 

  9. A. L. Giraldo-Aguirre, E. D. Erazo-Erazo, O. A. Flórez-Acosta, E. A. Serna-Galvis and R. A. Torres-Palma, J. Photochem. Photobiol., A., 311, 95 (2015).

    Article  CAS  Google Scholar 

  10. W. H. Glaze, J.-W. Kang and D. H. Chapin, Ozone Sci. Eng., 9, 335 (1987).

    Article  CAS  Google Scholar 

  11. E.A. Serna-Galvis, J. Silva-Agredo, A. L. Giraldo, O. A. Flórez-Acosta and R. A. Torres-Palma, Sci. Total Environ., 541, 1431 (2016).

    Article  CAS  Google Scholar 

  12. P. Villegas-Guzman, J. Silva-Agredo, O. Florez, A. L. Giraldo-Aguirre, C. Pulgarin and R. A. Torres-Palma, J. Environ. Manage., 190, 72 (2017).

    Article  CAS  Google Scholar 

  13. L. Qian, S. Wang, D. Xu, Y. Guo, X. Tang and L. Wang, Water Res., 89, 118 (2016).

    Article  CAS  Google Scholar 

  14. O. Ö. Söüt and M. Akgün, J. Chem. Technol. Biotechnol., 85, 640 (2010).

    Article  Google Scholar 

  15. V. Vadillo, M. B. García-Jarana, J. Sánchez-Oneto, J. R. Portela and E. J. M. de la Ossa, J. Chem. Technol. Biotechnol., 86, 1049 (2011).

    Article  CAS  Google Scholar 

  16. A. Loppinet-Serani, C. Aymonierand F. Cansell, J. Chem. Technol. Biotechnol., 85, 583 (2010).

    Article  CAS  Google Scholar 

  17. B. Kayan and B. Gözmen, J. Hazard. Mater., 201, 100 (2012).

    Article  Google Scholar 

  18. M. M. Islam, C. Zou, A. C. T. van Duin and S. Raman, Phys. Chem. Chem. Phys., 18, 761 (2016).

    Article  CAS  Google Scholar 

  19. H. Takahashi, S. Hisaoka and T. Nitta, Chem. Phys. Lett., 363, 80 (2002).

    Article  CAS  Google Scholar 

  20. Y. Zhang, J. Zhang, L. Zhao and C. Sheng, Energy Fuels, 24, 95 (2010).

    Article  CAS  Google Scholar 

  21. T. Honma and H. Inomata, J. Supercrit. Fluids, 90, 1 (2014).

    Article  CAS  Google Scholar 

  22. A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard, J. Phys. Chem. A., 105, 9396 (2001).

    Article  Google Scholar 

  23. Y. Han, D. Jiang, J. Zhang, W. Li, Z. Gan and J. Gu, FRONT. Chem. Sci. Eng., 1, 16 (2016).

    Article  Google Scholar 

  24. J. Zhang, X. Weng, Y. Han, W. Li, J. Cheng, Z. Gan and J. Gu, Fuel, 108, 682 (2013).

    Article  CAS  Google Scholar 

  25. J. Zhang, J. Gu, Y. Han, W. Li, Z. Gan and J. Gu, Ind. Eng. Chem. Res., 54, 1251 (2015).

    Article  CAS  Google Scholar 

  26. J. Zhang, J. Gu, Y. Han, W. Li, Z. Gan and J. Gu, J. Mol. Model., 21, 54 (2015).

    Article  Google Scholar 

  27. D. Jiang, Y. Wang, M. Zhang, J. Zhang, W. Li and Y. Han, Int. J. Hydrogen Energy, 15, 9667 (2017).

    Article  Google Scholar 

  28. E. Yabalak, H. A. Döndaş and A. M. Gizir, J. Environ. Sci. Health, Part A., 3, 210 (2017).

    Article  Google Scholar 

  29. E. Salmon, A. C. T. van Duin, F. Lorant, P.-M. Marquaire and W. A. Goddard III, Org. Geochem., 40, 1195 (2009).

    Article  CAS  Google Scholar 

  30. B. Chen, X.-Y. Wei, Z.-S. Yang, C. Liu, X. Fan, Y. Qing and Z.-M. Zong, Energy Fuels, 26, 984 (2012).

    Article  CAS  Google Scholar 

  31. H. Wang, H. A. G. Stern, D. Chakraborty, H. Bai, V. DiFilippo, J. S. Goela, M. A. Pickering and J. D. Gale, Ind. Eng. Chem. Res., 52, 15270 (2013).

    Article  CAS  Google Scholar 

  32. P. E. Savage, Chem. Rev., 99, 603 (1999).

    Article  CAS  Google Scholar 

  33. S. Wang, Y. Guo, L. Wang, Y. Wang, D. Xu and H. Ma, Fuel Process. Technol., 92, 291 (2011).

    Article  CAS  Google Scholar 

  34. S. Gopalan and P. E. Savage, AIChE J., 41, 1864 (1995).

    Article  CAS  Google Scholar 

  35. K. Minok, W. K. Lee and C. H. Lee, Chem. Eng. Sci., 52, 1201 (1997).

    Article  Google Scholar 

  36. L. Li, P. Chen and E. F. Gloyna, AIChE J., 37, 1687 (1991).

    Article  CAS  Google Scholar 

  37. D.-S. Lee, E. F. Gloyna and L. Li, J. Supercrit. Fluids, 3, 249 (1990).

    Article  Google Scholar 

  38. N. Segond, Y. Matsumura and K. Yamamoto, Ind. Eng. Chem. Res., 41, 6020 (2002).

    Article  CAS  Google Scholar 

  39. N. Akiya and P. E. Savage, Chem. Rev., 102, 2725 (2002).

    Article  CAS  Google Scholar 

  40. W.-J. Gong, F. Li and D.-L. Xi, Water Environ. Res., 80, 186 (2008).

    Article  CAS  Google Scholar 

  41. S. Gopalan and P. E. Savage, AIChE J., 41, 1864 (1995).

    Article  CAS  Google Scholar 

  42. J. L. DiNaro, J. W. Tester, J. B. Howard and K. C. Swallow, AIChE J., 46, 2274 (2000).

    Article  CAS  Google Scholar 

  43. S. F. Rice and E. Croiset, Ind. Eng. Chem. Res., 40, 86 (2001).

    Article  CAS  Google Scholar 

  44. P. E. Savage, J. Yu, N. Stylski and E. E. Brock, J. Supercrit. Fluids, 12, 141 (1998).

    Article  CAS  Google Scholar 

  45. H. Ma and J. Ma, J. Chem. Phys., 135, 054504 (2011).

    Article  Google Scholar 

  46. J. Zhang, X. Weng, Y. Han, W. Li, Z. Gan and J. Gu, J. Energy Chem., 22, 459 (2013).

    Article  Google Scholar 

  47. E. A. Serna-Galvis, J. Silva-Agredo, A. L. Giraldo, O. A. Flórez and R. A. Torres-Palma, Chem. Eng. J., 284, 953 (2016).

    Article  CAS  Google Scholar 

  48. B. Shukla, A. Susa, A. Miyoshi and M. Koshi, J. Phys. Chem. A., 112, 2362 (2008).

    Article  CAS  Google Scholar 

  49. A. Comandini, T. Malewicki and K. Brezinsky, J. Phys. Chem. A., 116, 2409 (2012).

    Article  CAS  Google Scholar 

  50. Y. Gong, Y. Guo, S. Wang and W. Song, Water Res., 100, 116 (2016).

    Article  CAS  Google Scholar 

  51. T. Fujii, R. Hayashi, S.-i. Kawasaki, A. Suzuki and Y. Oshima, J. Supercrit. Fluids, 58, 142 (2011).

    Article  CAS  Google Scholar 

  52. Y. Kida, C. A. Class, A. J. Concepcion, M.T. Timko and W.H. Green, Phys. Chem. Chem. Phys., 16, 9220 (2014).

    Article  CAS  Google Scholar 

  53. N. Meng, D. Jiang, Y. Liu, Z. Gao, Y. Cao, J. Zhang, J. Gu and Y. Han, Fuel, 186, 394 (2016).

    Article  CAS  Google Scholar 

  54. J. Wang, F. He, Y. Li and H. Sun, RSC Adv., 6, 93260 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You Han or Banu Örmeci.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Hu, T., Jiang, D. et al. Treatment of penicillin with supercritical water oxidation: Experimental study of combined ReaxFF molecular dynamics. Korean J. Chem. Eng. 35, 900–908 (2018). https://doi.org/10.1007/s11814-017-0341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0341-5

Keywords

Navigation