Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 974–983 | Cite as

Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation

  • Kasra Pirzadeh
  • Ali Asghar Ghoreyshi
  • Mostafa Rahimnejad
  • Maedeh Mohammadi
Separation Technology, Thermodynamics


The electrochemical route is a promising and environmentally friendly technique for fabrication of metal organic frameworks (MOFs) due to mild synthesis condition, short time for crystal growth and ease of scale up. A microstructure Cu3(BTC)2 MOF was synthesized through electrochemical path and successfully employed for CO2 and CH4 adsorption. Characterization and structural investigation of the MOF was carried out by XRD, FE-SEM, TGA, FTIR and BET analyses. The highest amount of carbon dioxide and methane sorption was 26.89 and 6.63 wt%, respectively, at 298 K. The heat of adsorption for CO2 decreased monotonically, while an opposite trend was observed for CH4. The results also revealed that the selectivity of the developed MOF towards CO2 over CH4 enhanced with increase of pressure and composition of carbon dioxide component as predicted by the ideal adsorption solution theory (IAST). The regeneration of as-synthesized MOF was also studied in six consecutive cycles and no considerable reduction in CO2 adsorption capacity was observed.


MOF Cu3(BTC)2 Electrochemical Synthesis CO2/CH4 Adsorption IAST 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron (2016).Google Scholar
  2. 2.
    C. Stewart and M.-A. Hessami, Energy Convers. Manage., 46, 403 (2005).CrossRefGoogle Scholar
  3. 3.
    A. K. Adhikari and K.-S. Lin, Chem. Eng. J., 284, 1348 (2016).CrossRefGoogle Scholar
  4. 4.
    H. C. Yoon, P. B. S. Rallapalli, S. S. Han, H. T. Beum, T. S. Jung, D. W. Cho, M. Ko and J.-N. Kim, Korean J. Chem. Eng., 32, 2501 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 43, 5657 (2014).CrossRefGoogle Scholar
  6. 6.
    M. G. Waller, E. D. Williams, S. W. Matteson and T. A. Trabold, Appl. Energy, 127, 55 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Choi, J. H. Drese and C. W. Jones, ChemSusChem, 2, 796 (2009).CrossRefGoogle Scholar
  8. 8.
    X. Wang, L. Chen and Q. Guo, Chem. Eng. J., 260, 573 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Li, H. Yi, X. Tang, F. Li and Q. Yuan, Chem. Eng. J., 229, 50 (2013).CrossRefGoogle Scholar
  10. 10.
    L. Liu, D. Nicholson and S. K. Bhatia, J. Phys. Chem. C, 119, 407 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Yi, F. Li, P. Ning, X. Tang, J. Peng, Y. Li and H. Deng, Chem. Eng. J., 215, 635 (2013).CrossRefGoogle Scholar
  12. 12.
    C. Shen, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Chem. Eng. J., 160, 398 (2010).CrossRefGoogle Scholar
  13. 13.
    F. Raganati, V. Gargiulo, P. Ammendola, M. Alfe and R. Chirone, Chem. Eng. J., 239, 75 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Munusamy, G. Sethia, D.V. Patil, P. B. S. Rallapalli, R. S. Somani and H. C. Bajaj, Chem. Eng. J., 195, 359 (2012).CrossRefGoogle Scholar
  15. 15.
    C. Janiak and J. K. Vieth, New J. Chem., 34, 2366 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Martinez Joaristi, J. Juan-Alcañiz, P. Serra-Crespo, F. Kapteijn and J. Gascon, Cryst. Growth Des., 12, 3489 (2012).CrossRefGoogle Scholar
  17. 17.
    J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 38, 1213 (2009).CrossRefGoogle Scholar
  18. 18.
    H. Al-Kutubi, J. Gascon, E. J. Sudhölter and L. Rassaei, ChemElec-troChem, 2, 462 (2015).CrossRefGoogle Scholar
  19. 19.
    D.-W. Jung, D.-A. Yang, J. Kim, J. Kim and W.-S. Ahn, Dalton Trans., 39, 2883 (2010).CrossRefGoogle Scholar
  20. 20.
    Z. Ni and R. I. Masel, J. Am Chem. Soc., 128, 12394 (2006).CrossRefGoogle Scholar
  21. 21.
    S. Khazalpour, V. Safarifard, A. Morsali and D. Nematollahi, RSC Adv., 5, 36547 (2015).CrossRefGoogle Scholar
  22. 22.
    R. Ameloot, L. Stappers, J. Fransaer, L. Alaerts, B. F. Sels and D. E. De Vos, Chem. Mater., 21, 2580 (2009).CrossRefGoogle Scholar
  23. 23.
    A. U. Czaja, N. Trukhan and U. Müller, Chem. Soc. Rev., 38, 1284 (2009).CrossRefGoogle Scholar
  24. 24.
    S. S.-Y. Chui, S. M.-F. Lo, J. P. Charmant, A. G. Orpen and I. D. Williams, Science, 283, 1148 (1999).CrossRefGoogle Scholar
  25. 25.
    K. Schlichte, T. Kratzke and S. Kaskel, Micropor. Mesopor. Mater., 73, 81 (2004).CrossRefGoogle Scholar
  26. 26.
    M. Gaab, N. Trukhan, S. Maurer, R. Gummaraju and U. Müller, Micropor. Mesopor. Mater., 157, 131 (2012).CrossRefGoogle Scholar
  27. 27.
    P. Silva, S. M. Vilela, J. P. Tomé and F. A. A. Paz, Chem. Soc. Rev., 44, 6774 (2015).CrossRefGoogle Scholar
  28. 28.
    A. Grondein and D. Bélanger, Fuel, 90, 2684 (2011).CrossRefGoogle Scholar
  29. 29.
    S. Khoshhal, A. A. Ghoreyshi, M. Jahanshahi and M. Mohammadi, RSC Adv., 5, 24758 (2015).CrossRefGoogle Scholar
  30. 30.
    B. Sun, S. Kayal and A. Chakraborty, Energy, 76, 419 (2014).CrossRefGoogle Scholar
  31. 31.
    T. M. Letcher, Thermodynamics, solubility and environmental issues, Elsevier (2007).Google Scholar
  32. 32.
    B. Wu, Y. Zhang and H. Wang, J. Phys. Chem. B, 113, 12332 (2009).CrossRefGoogle Scholar
  33. 33.
    W. Caminati, S. Melandri, A. Maris and P. Ottaviani, Angew. Chem. Int. Ed., 45, 2438 (2006).CrossRefGoogle Scholar
  34. 34.
    M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst and A. Wagener, Langmuir, 24, 8634 (2008).CrossRefGoogle Scholar
  35. 35.
    J. Li, J. Yang, L. Li and J. Li, J. Energy Chem., 23, 453 (2014).CrossRefGoogle Scholar
  36. 36.
    F. Martínez, R. Sanz, G. Orcajo, D. Briones and V. Yángüez, Chem. Eng. Sci., 142, 55 (2016).CrossRefGoogle Scholar
  37. 37.
    S. Bhadauria, A. Nanoti, S. Dasgupta, S. Divekar, P. Gupta and R. Chauhan, RSC Adv., 6, 93003 (2016).CrossRefGoogle Scholar
  38. 38.
    S. Salehi and M. Anbia, Energy Fuels, 31, 5376 (2017).CrossRefGoogle Scholar
  39. 39.
    N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein and X. Fan, Chem. Eng. J., 281, 669 (2015).CrossRefGoogle Scholar
  40. 40.
    M. Schlesinger, S. Schulze, M. Hietschold and M. Mehring, Micropor. Mesopor. Mater., 132, 121 (2010).CrossRefGoogle Scholar
  41. 41.
    R. S. Kumar, S. S. Kumar and M.A. Kulandainathan, Micropor. Mesopor. Mater., 168, 57 (2013).CrossRefGoogle Scholar
  42. 42.
    I. Ardelean and S. Cora, J. Mater. Sci.: Mater. Electronics, 19, 584 (2008).Google Scholar
  43. 43.
    F. Banisheykholeslami, A. A. Ghoreyshi, M. Mohammadi and K. Pirzadeh, CLEAN-Soil, Air, Water, 43, 1084 (2015).CrossRefGoogle Scholar
  44. 44.
    H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. Yildirim, J. Phys. Chem. Lett., 1, 1946 (2010).CrossRefGoogle Scholar
  45. 45.
    G. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthes and M. Krimissa, Appl. Geochem., 22, 249 (2007).CrossRefGoogle Scholar
  46. 46.
    C. Zhu, Z. Zhang, B. Wang, Y. Chen, H. Wang, X. Chen, H. Zhang, N. Sun, W. Wei and Y. Sun, Micropor. Mesopor. Mater., 226, 476 (2016).CrossRefGoogle Scholar
  47. 47.
    Z. H. Rada, H.R. Abid, J. Shang, Y. He, P. Webley, S. Liu, H. Sun and S. Wang, Fuel, 160, 318 (2015).CrossRefGoogle Scholar
  48. 48.
    H. R. Abid, Z. H. Rada, J. Shang and S. Wang, Polyhedron, 120, 103 (2016).CrossRefGoogle Scholar
  49. 49.
    J. Du and G. Zou, Inorg. Chem. Commun., 69, 20 (2016).CrossRefGoogle Scholar
  50. 50.
    H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang and Q.-x. Zhang, J. Zhejiang University-Science A, 10, 716 (2009).CrossRefGoogle Scholar
  51. 51.
    N. Lazaridis and D. Asouhidou, Water Res., 37, 2875 (2003).CrossRefGoogle Scholar
  52. 52.
    E. Mehrvarz, A. A. Ghoreyshi and M. Jahanshahi, Front. Chem. Sci. Eng., 11, 252 (2017).CrossRefGoogle Scholar
  53. 53.
    I. Prasetyo and D. Do, Chem. Eng. Sci., 53, 3459 (1998).CrossRefGoogle Scholar
  54. 54.
    S. Chowdhury and R. Balasubramanian, J. CO2 Util., 13, 50 (2016).CrossRefGoogle Scholar
  55. 55.
    Z. Bao, L. Yu, Q. Ren, X. Lu and S. Deng, J. Colloid Interface Sci., 353, 549 (2011).CrossRefGoogle Scholar
  56. 56.
    H. Zhimin, Y. Guocong and D. Barba, J. Chem. Ind. Eng. (China), 44, 143 (1993).Google Scholar
  57. 57.
    A. Myers and J. M. Prausnitz, AIChE J., 11, 121 (1965).CrossRefGoogle Scholar
  58. 58.
    Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li and J. Li, AIChE J., 59, 2195 (2013).CrossRefGoogle Scholar
  59. 59.
    P. Mishra, S. Mekala, F. Dreisbach, B. Mandal and S. Gumma, Sep. Purif. Technol., 94, 124 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Kasra Pirzadeh
    • 1
  • Ali Asghar Ghoreyshi
    • 1
  • Mostafa Rahimnejad
    • 1
  • Maedeh Mohammadi
    • 1
  1. 1.Chemical Engineering DepartmentBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations