Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 875–889 | Cite as

Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor

Catalysis, Reaction Engineering
  • 55 Downloads

Abstract

A two-dimensional pseudo-homogeneous model of wall-cooled fixed bed Fischer-Tropsch synthesis (FTS) reactor with Co/Re/γ-Al2O3 catalyst was developed to study the effect of process and design parameters on heat generation and removal characteristics. The influence of liquid-phase formation on heat transport was accounted for by using two-phase correlations. The effect of intraparticle diffusion on heat generation was considered. Detailed numerical simulations were performed to analyze the effect of process and design parameters on the reactor performance in terms of heat management. Results show that thermal behavior of FTS fixed bed reactors is very sensitive and any large disturbances can lead to temperature runaway. Large tube diameters are shown to be particularly unfavorable, with d t >5 cm resulting in axial and radial gradients greater than 20 K and 13 K, respectively. The importance of detailed reactor modeling when designing and optimizing FTS fixed bed reactors is highlighted.

Keywords

Fischer-Tropsch Synthesis Fixed Bed Reactor Cobalt Catalyst Heat Management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2017_335_MOESM1_ESM.pdf (124 kb)
Effects of process and design parameters on heat management in fixed bed Fischer-Tropsch synthesis reactor

References

  1. 1.
    M. E. Dry and A. P. Steynberg, Chapter 5-Commercial FT Process Applications, Studies in Surface Science and Catalysis, Elsevier, 152, 406 (2004).CrossRefGoogle Scholar
  2. 2.
    S. T. Sie, M. M. G. Senden and H. M. H. Van Wechem, Catal. Today, 8(3), 371 (1991).CrossRefGoogle Scholar
  3. 3.
    A. Hoek and L. B. J. M. Kersten, The Shell Middle Distillate Synthesis process: technology, products and perspective, Studies in Surface Science and Catalysis, Elsevier, 147, 25 (2004).Google Scholar
  4. 4.
    A. Jess, R. Popp and K. Hedden, Appl. Catal. A, 186, 321 (1999).CrossRefGoogle Scholar
  5. 5.
    D. Bode and S.T. Sie, US Patent US4686238 A (1987).Google Scholar
  6. 6.
    S.T. Sie and R. Krishna, Appl. Catal. A, 186, 55 (1999).CrossRefGoogle Scholar
  7. 7.
    A.Y. Khodakov, W. Chu and P. Fongarland, Chem. Rev., 107, 1692 (2007).CrossRefGoogle Scholar
  8. 8.
    A.P. Steynberg, M.E. Dry, B.H. Davis and B.B. Breman, Chapter 2-Fischer-Tropsch Reactors, Studies in Surface Science and Catalysis, Elsevier, 152, 64 (2004).CrossRefGoogle Scholar
  9. 9.
    O.M. Basha, L. Sehabiague, A. Abdel-Wahab and B. I. Morsi, Int. J. Chem. Reactor Eng., 13(3), 201 (2015).CrossRefGoogle Scholar
  10. 10.
    H.E. Atwood and C.O. Bennett, Ind. Eng. Chem. Process Des. Dev., 18, 163 (1979).CrossRefGoogle Scholar
  11. 11.
    G. Bub and M. Baerns, Chem. Eng. Sci., 35, 348 (1980).CrossRefGoogle Scholar
  12. 12.
    Y.-N. Wang, Y.-Y. Xu, Y.-W. Li, Y.-L. Zhao and B.-J. Zhang, Chem. Eng. Sci., 58, 867 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Chabot, R. Guilet, P. Cognet and C. Gourdon, Chem. Eng. Sci., 127, 72 (2015).CrossRefGoogle Scholar
  14. 14.
    R. Guettel and T. Turek, Chem. Eng. Sci., 64, 955 (2009).CrossRefGoogle Scholar
  15. 15.
    K. M. Brunner, J. C. Duncan, L. D. Harrison, K. E. Pratt, R. P. S. Peguin, C. H. Bartholomew and W. C. Hecker, Int. J. Chem. Reactor Eng., 10, 1 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Sharma, R. Philippe, F. Luck and D. Schweich, Chem. Eng. Sci., 66, 6358 (2011).CrossRefGoogle Scholar
  17. 17.
    T. S. Lee and J. N. Chung, Energy Fuels, 26, 1363 (2012).CrossRefGoogle Scholar
  18. 18.
    A. Jess and C. Kern, Chem. Eng. Technol., 32, 1164 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Jess and C. Kern, Chem. Eng. Technol., 35(2), 369 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Jess and C. Kern, Chem. Eng. Technol., 35, 379 (2012).CrossRefGoogle Scholar
  21. 21.
    A. Moutsoglou and P. P. Sunkara, Energy Fuels, 25(5), 2242 (2011).CrossRefGoogle Scholar
  22. 22.
    M. M. Ghouri, S. Afzal, R. Hussain, J. Blank, D. B. Bukur and N. O. Elbashir, Comput. Chem. Eng., 91, 38 (2016).CrossRefGoogle Scholar
  23. 23.
    N. Park, J. R. Kim, Y. Yoo, J. Lee and M. J. Park, Fuel, 122, 229 (2014).CrossRefGoogle Scholar
  24. 24.
    P. Kaiser and A. Jess, Energy Technol., 2(5), 486 (2014).CrossRefGoogle Scholar
  25. 25.
    A. Ghareghashi, F. Shahraki, K. Razzaghi, S. Ghader and M. A. Torangi, Korean J. Chem. Eng., 34, 87 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Knochen, R. Guettel, C. Knobloch and T. Turek, Chem. Eng. Process., 49, 958 (2010).CrossRefGoogle Scholar
  27. 27.
    M. Stamenić, V. Dikić, M. Mandić, B. Todić, D. B. Bukur and N. M. Nikačević, Ind. Eng. Chem. Res., 56(36), 9964 (2017).CrossRefGoogle Scholar
  28. 28.
    N. J. Mariani, O. M. Martínez and G. F. Barreto, Chem. Eng. Sci., 56(21-22), 5995 (2001).CrossRefGoogle Scholar
  29. 29.
    A.M. Hilmen, E. Bergene, O. A. Lindvåg, D. Schanke, S. Eri and A. Holmen, Catal. Today, 105(3-4), 357 (2005).CrossRefGoogle Scholar
  30. 30.
    R.M. de Deugd, F. Kapteijn and J. A. Moulijn, Catal Today, 79-80, 495 (2003).CrossRefGoogle Scholar
  31. 31.
    A. Matsuura, Y. Hitaka, T. Akehata and T. Shirai, Heat Transfer-Jpn. Res., 8, 44 (1979).Google Scholar
  32. 32.
    M.R. Khadilkar, PhD Thesis, Washington University (1998).Google Scholar
  33. 33.
    M. F.M. Post, A.C. Van’t Hoog, J. K. Minderhoud and S.T. Sie, AIChE J., 35(7), 1107 (1989).CrossRefGoogle Scholar
  34. 34.
    G.F. Froment, K.B. Bischoff and J. De Wilde, Chemical Reactor Analysis and Design, 3rd Ed., Wiley (2011).Google Scholar
  35. 35.
    L.C. Young and B.A. Finlayson, Ind. Eng. Chem. Fund., 12, 412 (1973).CrossRefGoogle Scholar
  36. 36.
    A. de Klerk, AIChE J., 49, 2022 (2003).CrossRefGoogle Scholar
  37. 37.
    H. Delmas and G. F. Froment, Chem. Eng. Sci., 43, 2281 (1988).CrossRefGoogle Scholar
  38. 38.
    B. Todic, T. Bhatelia, G. F. Froment, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Ind. Eng. Chem. Res., 52, 669 (2013).CrossRefGoogle Scholar
  39. 39.
    I. C. Yates and C. N. Satterfield, Energy Fuels, 5(1), 168 (1991).CrossRefGoogle Scholar
  40. 40.
    W. Ma, G. Jacobs, T. K. Das and B. H. Davis, Ind. Eng. Chem. Res., 53(6), 2157 (2014).CrossRefGoogle Scholar
  41. 41.
    B. Todic, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Catal. Today, 228, 32 (2014).CrossRefGoogle Scholar
  42. 42.
    S. Ergun, Chem. Eng. Prog., 48, 89 (1952).Google Scholar
  43. 43.
    R. Krishna and S. T. Sie, Chem. Eng. Sci., 49, 4029 (1994).CrossRefGoogle Scholar
  44. 44.
    W. H. Zimmerman, J. A. Rossin and D. B. Bukur, Ind. Eng. Chem. Res., 28(4), 406 (1989).CrossRefGoogle Scholar
  45. 45.
    M. E. Dry, Appl. Catal. A., 138(2), 319 (1996).CrossRefGoogle Scholar
  46. 46.
    B. Kaskes, D. Vervloet, F. Kapteijn and J.R. van Ommen, Chem. Eng. J., 283, 1465 (2016).CrossRefGoogle Scholar
  47. 47.
    H. S. Fogler, Elements of chemical reaction engineering, Prentice-Hall (1992).Google Scholar
  48. 48.
    B. Poling, J. Prausnitz and J.O. Connell, The Properties of Gases and Liquids, McGraw-Hill Education (2000).Google Scholar
  49. 49.
    P. Chaumette, C. Verdon and P. Boucot, Top. Catal., 2(1-4), 301 (1995).CrossRefGoogle Scholar
  50. 50.
    M. Mandić, B. Todić, L. Živanić, N. Nikačević and D. B. Bukur, Ind. Eng. Chem. Res., 56(10), 2733 (2017).CrossRefGoogle Scholar
  51. 51.
    C. Erkey, J. B. Rodden and A. Akgerman, Can. J. Chem. Eng., 68, 661 (1990).CrossRefGoogle Scholar
  52. 52.
    J. J. Marano and G. D. Holder, Fluid Phase Equilib., 138, 1 (1997).CrossRefGoogle Scholar
  53. 53.
    A. P. de Wasch and G. F. Froment, Chem. Eng. Sci., 27(3), 567 (1972).CrossRefGoogle Scholar
  54. 54.
    C.-H. Li and B. Finlayson, Chem. Eng. Sci., 32(9), 1055 (1977).CrossRefGoogle Scholar
  55. 55.
    V. Specchia, G. Baldi and S. Sicardi, Chem. Eng. Commun., 4, 361 (1980).CrossRefGoogle Scholar
  56. 56.
    Y. Demirel, R. Sharma and H. Al-Ali, Int. J. Heat Mass Transfer., 43(2), 327 (2000).CrossRefGoogle Scholar
  57. 57.
    O. Bey and G. Eigenberger, Int. J. Therm. Sci., 40(2), 152 (2001).CrossRefGoogle Scholar
  58. 58.
    S. Yagi and D. Kunii, AIChE J., 6(1), 97 (1960).CrossRefGoogle Scholar
  59. 59.
    P. H. Calderbank and L. A. Pogorski, Trans. Inst. Chem. Eng., 35, 195 (1957).Google Scholar
  60. 60.
    M. J. Taulamet, N. J. Mariani, G. F. Barreto and O. M. Martínez, Rev. Chem. Eng., 31, 97 (2015).CrossRefGoogle Scholar
  61. 61.
    A. Matsuura, Y. Hitaka, T. Akehata and T. Shirai, Heat Transfer-Jpn. Res., 8, 53 (1979).Google Scholar
  62. 62.
    Y.-N. Wang, W.-P. Ma and Y.-J. Lu, Fuel, 82(2), 195 (2003).CrossRefGoogle Scholar
  63. 63.
    S.T. Sie and R. Krishna, Appl. Catal. A., 186, 55 (1999).CrossRefGoogle Scholar
  64. 64.
    V. Hlavacek, Ind. Eng. Chem., 62, 8 (1970).Google Scholar
  65. 65.
    K. Ghodasara, R. Smith and S. Hwang, Korean J. Chem. Eng., 31, 1136 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Chemical Engineering ProgramTexas A&M University at QatarDohaQatar
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.Texas A&M University, 3122 TAMUCollege StationUSA

Personalised recommendations