Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 994–999 | Cite as

Photocatalytic removal of NOx over immobilized BiFeO3 nanoparticles and effect of operational parameters

  • Taher Rahimi Aghdam
  • Habib Mehrizadeh
  • Dariush Salari
  • Hui-Hsin Tseng
  • Aligholi Niaei
  • Azam Amini
Materials (Organic, Inorganic, Electronic, Thin Films)


Perovskite type BiFeO3 (BFO) was synthesized by sol-gel auto-combustion method. Synthesized BFO was immobilized on the micro slides glass plates by sol-gel dip-coating method. The sample was characterized by XRD, FESEM, UV-Vis DRS, and BET techniques. The XRD pattern confirmed the perovskite structure, and from the Debye-Scherrer equation the average crystalline size was calculated as 19 nm. The FE-SEM images of prepared BFO showed porous structure with low agglomeration. The band gap energy was calculated about 2.13 eV, and the specific surface area (SSA) of prepared BFO nanostructure was obtained 55.1m2 g−1. The photocatalytic activity of prepared pure and immobilized BFO was investigated in the removal of NOx under UV irradiation, in the batch photoreactor. The effects of operational parameters such as initial concentration of NOx, light intensity and amount of coated photocatalyst, under identical conditions, were investigated. The results showed that the highest conversion of NOx was obtained as 35.83% in the 5 ppm of NOx with 1.2 g immobilized BFO and under 15 W illumination lamp.


Air Pollution Photocatalysis Perovskite Nanostructure Bismuth Ferrite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ângelo, L. Andrade, L. M. Madeira and A. Mendes, J. Environ. Manage., 129, 522 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Lasek, Y.-H. Yu and J. Wu, J. Photochem. Photobiol. C: Photochem. Rev., 14, 29 (2013).CrossRefGoogle Scholar
  3. 3.
    F. Normann, K. Andersson, B. Leckner and F. Johnsson, Progress in Energy and Combustion Science, 35(5), 385 (2009).CrossRefGoogle Scholar
  4. 4.
    P. N. Panahi, A. Niaei, D. Salari, S.M. Mousavi and G. Delahay, J. Environ. Sci., 35, 135 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Roy, M. Hegde and G. Madras, Appl. Energy, 86(11), 2283 (2009).CrossRefGoogle Scholar
  6. 6.
    T. Maggos, J. Bartzis, P. Leva and D. Kotzias, Appl. Phys. A, 89(1), 81 (2007).CrossRefGoogle Scholar
  7. 7.
    G. Catalan and J. F. Scott, Adv. Mater., 21(24), 2463 (2009).CrossRefGoogle Scholar
  8. 8.
    H. Liu, Y. Guo, B. Guo and D. Zhang, Solid State Sciences, 19, 69 (2013).CrossRefGoogle Scholar
  9. 9.
    Z. Ai, W. Ho, S. Lee and L. Zhang, Environ. Sci. Technol., 43(11), 4143 (2009).CrossRefGoogle Scholar
  10. 10.
    S.N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, Angewandte Chemie International Edition, 52(29), 7372 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang, Y. Qu, F. Raziq and L. Jing, Appl. Catal. B: Environ., 180, 219 (2016).CrossRefGoogle Scholar
  12. 12.
    N. Bowering, G. S. Walker and P. G. Harrison, Appl. Catal. B: Environ., 62(3), 208 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Anpo, T.-H. Kim and M. Matsuoka, Catal. Today, 142(3), 114 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Yamashita, Y. Ichihashi, S.G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi and M. Anpo, Appl. Surf. Sci., 121, 305 (1997).CrossRefGoogle Scholar
  15. 15.
    M. Anpo and M. Takeuchi, J. Catal., 216(1), 505 (2003).CrossRefGoogle Scholar
  16. 16.
    A.O. Ibhadon and P. Fitzpatrick, Catalysts, 3(1), 189 (2013).CrossRefGoogle Scholar
  17. 17.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D.W. Bahnemann, Chem. Rev., 114(19), 9919 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Fathinia, A. Khataee, M. Zarei and S. Aber, J. Mol. Catal. A: Chem., 333(1), 73 (2010).CrossRefGoogle Scholar
  19. 19.
    C. Quan, Y. Han, N. Gao, W. Mao, J. Zhang, J. Yang and W. Huang, Ceramics International, 42(1), 537 (2016).CrossRefGoogle Scholar
  20. 20.
    N. Gao, C. Quan, Y. Ma, Y. Han, Z. Wu, W. Mao, J. Zhang, J. Yang and W. Huang, Physica B: Condensed Matter, 481, 45 (2016).CrossRefGoogle Scholar
  21. 21.
    F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou and J. M. Liu, Adv. Mater., 19(19), 2889 (2007).CrossRefGoogle Scholar
  22. 22.
    L. Li, X. Liu, Y. Zhang, P.A. Salvador and G. S. Rohrer, Int. J. Hydrogen Energy, 38(17), 6948 (2013).CrossRefGoogle Scholar
  23. 23.
    D.-C. Jia, J.-H. Xu, H. Ke, W. Wang and Y. Zhou, J. European Ceramic Soc., 29(14), 3099 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Aber, H. Mehrizade and A.R. Khataee, Desalination Water Treatment, 28(1–3), 92 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Sheng-Hong, C. Sen, Y. Ning and Z. Yue-Li, Ferroelectrics, 454(1), 78 (2013).CrossRefGoogle Scholar
  26. 26.
    H. Mehrizadeh, A. Niaei, H.-H. Tseng, D. Salari and A. Khataee, J. Photochem. Photobiol. A: Chem., 332, 188 (2017).CrossRefGoogle Scholar
  27. 27.
    T. Soltani and B.-K. Lee, J. Hazard. Mater., 316, 122 (2016).CrossRefGoogle Scholar
  28. 28.
    Y. Huo, Y. Jin and Y. Zhang, J. Mole. Catal. A: Chem., 331(1), 15 (2010).CrossRefGoogle Scholar
  29. 29.
    M.A. Zazouli, A. Nattaj Jolodar and M. Hoseinei, J. Appl. Sci. Environ. Manage., 12(1), 119 (2018).Google Scholar
  30. 30.
    S. Devahasdin, C. Fan, K. Li and D. H. Chen, J. Photochem. Photobiol. A: Chem., 156(1), 161 (2003).CrossRefGoogle Scholar
  31. 31.
    J.V. S. de Melo and G. Trichês, Building Environ., 49, 117 (2012).CrossRefGoogle Scholar
  32. 32.
    U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol. C: Photochem. Rev., 9(1), 1 (2008).CrossRefGoogle Scholar
  33. 33.
    G. Hüsken, M. Hunger and H. Brouwers, Building Environ., 44(12), 2463 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Taher Rahimi Aghdam
    • 1
  • Habib Mehrizadeh
    • 2
  • Dariush Salari
    • 1
  • Hui-Hsin Tseng
    • 3
  • Aligholi Niaei
    • 4
  • Azam Amini
    • 1
  1. 1.Research Laboratory of Petroleum Technology, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Department of Applied Chemistry, Faculty of ChemistryUniversity of UrmiaUrmiaIran
  3. 3.School of Occupational Safety and HealthChung Shan Medical UniversityTaichungTaiwan, ROC
  4. 4.Research Laboratory of Reactor and Catalyst, Faculty of Chemical EngineeringUniversity of TabrizTabrizIran

Personalised recommendations