Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 819–825 | Cite as

Fuzzy-based nonlinear PID controller and its application to CSTR

  • Gun-Baek So
  • Gang-Gyoo Jin
Process Systems Engineering, Process Safety
  • 55 Downloads

Abstract

This study presents a new design method for a nonlinear variable-gain PID controller, the gains of which are described by a set of fuzzy rules. User-defined parameters are tuned using a genetic algorithm by minimizing the integral of absolute error and the weighted control input deviation index. It was observed in the experimental results on a continuous stirred tank reactor (CSTR) that the proposed controller provided performances: overshoot M p ≤1.25%, 2% settling time t s ≤1.71 s and IAE≤1.26 for set-point tracking, perturbance peak M peak ≤0.05%, 2% recovery time t rcy ≤3.97 s and IAE≤0.10 for disturbance rejection, and M peak ≤0.04%, t rcy ≤2.74 s and IAE≤0.04 for parameter changes. Comparison with those of two other methods revealed that the proposed controller not only led to less overshoot and shorter settling time for set-point tracking and less perturbance peak and shorter recovery time for disturbance rejection, but also showed less sensitivity to parameter changes.

Keywords

PID Controller Nonlinear Gains Tagaki-Sugeno Fuzzy Rule Continuous Stirred Tank Reactor (CSTR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Ray, Advanced Process Control, McGraw-Hill (1981).Google Scholar
  2. 2.
    B. W. Bequette, Process Control: Modeling, Design and Simulation, Prentice Hall (2002).Google Scholar
  3. 3.
    C. L. Smith, Practical Process Control: Tuning and Troubleshooting, Wiley (2009).CrossRefGoogle Scholar
  4. 4.
    C. T. Chen and S. T. Peng, Int. J. Process Control, 9, 151 (1999).CrossRefGoogle Scholar
  5. 5.
    W. D. Chang, Simulation Modelling Practice Theory, 31, 1 (2013).CrossRefGoogle Scholar
  6. 6.
    K. A. Dagher and A. S. Al-Araji, Al-Khwarizmi Eng. J., 9, 46 (2013).Google Scholar
  7. 7.
    M. M. Sabir and J. A. Khan, Advances in Artificial Neural Systems, 2014 (2014).Google Scholar
  8. 8.
    A. B. Pati, R. H. Chile and V.R. Wahane, Michael Faraday IET Int. Summit 2015: MFIIS-2015, 36 (2015).Google Scholar
  9. 9.
    Y. Zhuo and Q. Zhu, 2015 7 th Int. Conf. on Modelling, Identification and Control (2015).Google Scholar
  10. 10.
    T. Rasul and M. Pathak, 1 st IEEE Int. Conf. on Power Electronics, Intelligent Control and Energy Systems, 1 (2016).Google Scholar
  11. 11.
    P. Saini, S. K. Gaba, N. Rajput and A. Aggarwal, 2016 3 rd Int. Conf. on Computing for Sustainable Global Development, 2778 (2016).Google Scholar
  12. 12.
    D. A. Tamboli and R. H. Chile, 2016 Int. Conf. on Advances in Computing, Communications and Informatics, 1410 (2016).Google Scholar
  13. 13.
    H. Seraji, J. Robotics System, 15, 161 (1998).CrossRefGoogle Scholar
  14. 14.
    Y. X. Su, D. Sun and B. Y. Duan, Mechatronics, 15, 1005 (2005).CrossRefGoogle Scholar
  15. 15.
    C. Li, S. Wang, Z. Yue, J. Yu and H. Wang, Proc. of the 27 th Chinese Conf. Control, 377 (2008).Google Scholar
  16. 16.
    H. Zhang and B. Hu, Proc. Int. Conf. Future Electrical Power and Energy System, 202 (2012).Google Scholar
  17. 17.
    M. Korkmaz, O. Aydogdu and H. Dogan, Proc. Int. Symp. Innovations in Intelligent Systems and Applications, 1 (2012).Google Scholar
  18. 18.
    J. Chen, B. Lu, F. Fan, S. Zhu and W. Jianxin, Appl. Mech. Mater., 141, 157 (2012).CrossRefGoogle Scholar
  19. 19.
    R. Lucas, R. M. Oliveira, C. B. Nascimento and M. S. Kaster, 2015 IEEE 24 th Int. Symp. on Industrial Electronics (ISIE), 1022 (2015).CrossRefGoogle Scholar
  20. 20.
    P. Mishra, V. Kumar and K. P. S. Rana, ISA Transactions, 58, 434 (2015).CrossRefGoogle Scholar
  21. 21.
    K. J. Åström and T. Hägglund, PID Controllers: Theory, Design and Tuning, ISA (1995).Google Scholar
  22. 22.
    A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules 3rd Ed., Imperial College Press (2009).CrossRefGoogle Scholar
  23. 23.
    T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15, 116 (1985).Google Scholar
  24. 24.
    R. Isermann, Digital Control Systems, Springer-Verlag, N. Y. (1977).Google Scholar
  25. 25.
    G. G. Jin, Genetic Algorithms and Their Application, Kyo-Woo Publishing Co. (2000).Google Scholar
  26. 26.
    K. Watanabe and M. M. A. Hashem, Evolutionary Computations: New Algorithms and their Applications to Evolutionary Robots, Springer (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Convergence Study on the OSTKorea Maritime and Ocean UniversityBusanKorea
  2. 2.Division of ITKorea Maritime and Ocean UniversityBusanKorea

Personalised recommendations