Skip to main content

Morphological, acoustical, and physical properties of free-rising polyurethane foams depending on the flow directions

Abstract

Polyurethane foam is widely used for automobile compartments as sound absorption materials due to its excellent noise dissipation characteristics. This sound absorption property is strongly dependent on the cavity and pore structures of the foams, and the cell morphology can be modulated by controlling experimental parameters. Two types of gelling catalysts were demonstrated in fabrications of polyurethane foams to control the cell morphology. The cell morphology of the free-rising polyurethane foams was investigated using dibutyltin-dilaurate and triethylenediamnine gelling catalysts, and the cell structures were analyzed from the free-rising samples obtained in various sampling heights and flow directions. The finer cell morphology was obtained with the organotin type catalyst by the faster gelling reactivity, compared with the amine type catalyst. In addition, the spherical small cavities in the samples obtained from horizontal planes of the free-rising foams revealed higher sound absorption coefficient and physical toughness than the elliptical irregular cavities from vertical planes, due to the higher homogeneity of cavity distributions in the horizontal planes.

This is a preview of subscription content, access via your institution.

References

  1. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, Compos. Sci. Technol., 65, 2344 (2005).

    CAS  Article  Google Scholar 

  2. N.-C. Park, Y.-C. Kim and C.-R. Park, J. Korean Ind. Eng. Chem., 8, 197 (1997)

    CAS  Google Scholar 

  3. J. J. Zwinselman and W.D. Bachmann, J. Cell. Plast., 24, 274 (1988).

    CAS  Article  Google Scholar 

  4. D. K. Lee, L. Chen, A. Sendijarevic, V. Sendijarevic, K. C. Frisch and D. Klempner, J. Cell. Plast., 27, 135 (1991).

    CAS  Article  Google Scholar 

  5. R. Gayathri, R. Vasanthakumari and C. Padmanabhan, Int. J. Sci. Eng. Res., 4, 301 (2013).

    Google Scholar 

  6. Y. Liu, Y.B. Jia, X. J. Zhang, Z.C. Liu, Y.C. Ren and B. Yang, Appl. Mech. Mater., 307, 196 (2013).

    Article  Google Scholar 

  7. O. Doutres, N. Atalla and K. Dong, J. Appl. Phys., 110, 064901 (2011).

    Article  Google Scholar 

  8. J. G. Gwon, S. K. Kim and J. H. Kim, Mater. Des., 89, 448 (2016).

    CAS  Article  Google Scholar 

  9. J. G. Gwon, S. K. Kim and J. H. kim, J. Porous Mater., 23, 465 (2016).

    CAS  Article  Google Scholar 

  10. C. H. Sung, K. S. Lee, K. S. Lee, S. M. Oh, J. H. Kim, M. S. Kim and H. M. Jeong, Macromol. Res., 15, 443 (2007).

    CAS  Article  Google Scholar 

  11. O. Doutres, N. Atalla and K. Dong, J. Appl. Phys., 113, 054901 (2013).

    Article  Google Scholar 

  12. C. Zhang, J. Li, Z. Hu, F. Zhu and Y. Huang, Mater. Des., 41, 319 (2012).

    CAS  Article  Google Scholar 

  13. M. Álvarez-Láinez, M. A. Rodríguez-Pérez and J. A. de Saja, Mater. Lett., 121, 26 (2014).

    Article  Google Scholar 

  14. S. Tomyangkul, P. Pongmuksuwan, W. Harnnarongchai and K. Chaochanchaikul, J. Reinf. Plast. Compos., 35, 688 (2016).

    Article  Google Scholar 

  15. D. Randall and S. Lee, The polyurethanes book, Wiley, New York (2002).

    Google Scholar 

  16. E. Delebecq, J.-P. Pascault, B. Boutevin and F. Ganachaud, Chem. Rev., 113, 80 (2012).

  17. G. Sung, J. G. Gwon, and J. H. Kim, J. Appl. Polym. Sci., 133, 43737 (2016).

    Article  Google Scholar 

  18. J. G. Gwon, G. Sung and J. H. Kim, Int. J. Precis. Eng. Manuf., 16, 2299 (2015).

    Article  Google Scholar 

  19. G. Sung, J. W. Kim and J. H. Kim, J. Ind. Eng. Chem., 44, 99 (2016).

    CAS  Article  Google Scholar 

  20. G. Sung, S. K. Kim, J. W. Kim and J. H. Kim, Polym. Test., 53, 156 (2016).

    CAS  Article  Google Scholar 

  21. S. K. Kim, G. Sung, J. G. Gwon and J. H. Kim, Int. J. Precis. Eng. Manuf.-Green Technol., 3, 367 (2016).

    Article  Google Scholar 

  22. G. Sung and J. H. Kim, Korean J. Chem. Eng., 34, 1222 (2017).

    CAS  Article  Google Scholar 

  23. G. Sung and J. H. Kim, Compos. Sci. Technol., 146, 147 (2017).

    CAS  Article  Google Scholar 

  24. J. Lee, G. H. Kim and C. S. Ha, J. Appl. Polym. Sci., 123, 2384 (2012).

    CAS  Article  Google Scholar 

  25. H.-M. Park, A. K. Mohanty, L. T. Drzal, E. Lee, D. F. Mielewski and M. Misra, J. Polym. Environ., 14, 27 (2006).

    CAS  Article  Google Scholar 

  26. D. L. Johnson, J. Koplik and R. Dashen, J. Fluid Mech., 176, 379 (1987).

    CAS  Article  Google Scholar 

  27. J. Allard and N. Atalla, Propagation of sound in porous media: modelling sound absorbing materials, John Wiley & Sons, Chichester (2009).

    Book  Google Scholar 

  28. R. Verdejo, R. Stämpfli, M. Alvarez-Lainez, S. Mourad, M. Rodriguez-Perez, P. Brühwiler and M. Shaffer, Compos. Sci. Technol., 69, 1564 (2009).

    CAS  Article  Google Scholar 

  29. J. A. Elliott, A. H. Windle, J. R. Hobdell, G. Eeckhaut, R. J. Oldman, W. Ludwig, E. Boller, P. Cloetens and J. Baruchel, J. Mater. Sci., 37, 1547 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hyeun Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sung, G., Choe, H., Choi, Y. et al. Morphological, acoustical, and physical properties of free-rising polyurethane foams depending on the flow directions. Korean J. Chem. Eng. 35, 1045–1052 (2018). https://doi.org/10.1007/s11814-017-0328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0328-2

Keywords

  • Polyurethane Foams
  • Flow Direction
  • Catalysts
  • Sound Absorption Coefficient