Skip to main content
Log in

Fabrication of polypyrrole composite on perlite zeolite surface and its application for removal of copper from wood and paper factories wastewater

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The large volumes of water used in wood and paper industries produce substantial amounts of wastewater. These industries are among the most polluting ones in the world; there are large quantities of heavy metals (copper, iron, zinc, etc.) and dyes in the wastewater of these industries, and this wastewater has high levels of COD and BOD. We studied copper removal from the effluents of a wood and paper factory by using a polypyrrole composite consisting of natural Zeolite coated on Perlite (PPy/Perlite). The experiments were performed in a batch system in which effects of various parameters including pH, contact time, adsorbent dosage, and temperature on adsorption were studied. Moreover, SEM and FTIR were employed to identify the structure of the synthesized adsorbent. Results indicated that the maximum copper removal (95%) happened at pH=6, contact time of 12 minutes, and adsorbent dose of 0.4 g/100 mL of the wastewater. Furthermore, copper adsorption capacity of the PPy/Perlite adsorbent improved with increases in temperature and reached its peak at 40 °C. Values of the thermodynamic variables (ΔS, ΔH, ΔG) indicated that copper adsorption could occur in the temperature range of 293-323 Kelvin, and was spontaneous and endothermic. Equilibrium information in the studied range of the initial concentrations of copper and in the temperature range suitably matched the Freundlich isotherm. Evaluation of experimental information for studying the kinetics of copper adsorption by PPy/Perlite revealed that copper adsorption followed the pseudo-second-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kurczewska, G. Schroeder and U. Narkiewicz, Open Chem., 8, 341 (2010).

    Article  CAS  Google Scholar 

  2. D. Pokhrel and T. Viraraghavan, Sci. Total Environ., 333, 37 (2004).

    Article  CAS  Google Scholar 

  3. M. Jalilzadeh and S. Şenel, J. Water Process. Eng., 13, 143 (2016).

    Article  Google Scholar 

  4. F. Ouadjenia-Marouf, R. Marouf, J. Schott and A. Yahiaoui, Arab. J. Chem., 6, 401 (2013).

    Article  CAS  Google Scholar 

  5. H.-X. Zhu, X.-J. Cao, Y.-C. He, Q.-P. Kong and H. He, J. Wang, Carbohydr. Polym., 129, 115 (2015).

    Article  CAS  Google Scholar 

  6. J. Acharya, J. Sahu, B. Sahoo, C. Mohanty and B. Meikap, Chem. Eng. J., 150, 25 (2009).

    Article  CAS  Google Scholar 

  7. E. Derakhshani and A. Naghizadeh, Desalin. Water Treat, 52, 7468 (2014).

    Article  CAS  Google Scholar 

  8. Q.-Q. Zhong, Q.-Y. Yue, Q. Li, B.-Y. Gao and X. Xu, Carbohydr. Polym., 111, 788 (2014).

    Article  CAS  Google Scholar 

  9. A. Naghizadeh and R. Nabizadeh, Environ. Prot. Eng., 42, 149 (2016).

    Google Scholar 

  10. A.R. Dinçer, Y. Güneş and N. Karakaya, J. Hazard. Mater., 141, 529 (2007).

    Article  Google Scholar 

  11. N. Azbar, T. Yonar and K. Kestioglu, Chemosphere, 55, 35 (2004).

    Article  CAS  Google Scholar 

  12. O. E. A. Salam, N. A. Reiad and M. M. ElShafei, J. Adv. Res., 2, 297 (2011).

    Article  Google Scholar 

  13. H.A. Hegazi, HBRC J., 9, 276 (2013).

    Article  Google Scholar 

  14. K.G. bhattacharyya and S. S. Gupta, Desalination, 272, 66 (2011).

    Article  CAS  Google Scholar 

  15. F. Ji, C. Li, B. Tang, J. Xu, G. Lu and P. Liu, Chem. Eng. J., 209, 325 (2012).

    Article  CAS  Google Scholar 

  16. S. Machida, S. Miyata and A. Techagumpuch, Synth. Met., 31, 311 (1989).

    Article  CAS  Google Scholar 

  17. S. Rapi, V. Bocchi and G. P. Gardini, Synth. Met., 24, 217 (1988).

    Article  CAS  Google Scholar 

  18. A. Tajik and R. M. A. Tehrani, J. Appl. Chem., 10, 159 (2015).

    Google Scholar 

  19. Z. B. Ouznadji, M.N. Sahmoune and N.Y. Mezenner, Desalin. Water Treat, 57, 1880 (2016).

    Article  CAS  Google Scholar 

  20. S.N. Azizi and N. Asemi, J. Environ. Sci. Health Part B, 47, 692 (2012) 692.

    Article  CAS  Google Scholar 

  21. M. Omraei, H. Esfandian, R. Katal and M. Ghorbani, Desalination, 271, 248 (2011).

    Article  CAS  Google Scholar 

  22. R. Katal and H. Pahlavanzadeh, J. Vinyl Addit. Technol., 17, 138 (2011).

    Article  CAS  Google Scholar 

  23. A. Naghizadeh, Arab. J. Sci. Eng., 41, 155 (2016).

    Article  CAS  Google Scholar 

  24. H. Zavvar Mousavi and Z. Lotfi, J. Appl. Chem., 7, 49 (2012).

    Google Scholar 

  25. A. Naghizadeh, J. Water Supply Res. Technol.-Aqua, 64, 64 (2015).

    Article  Google Scholar 

  26. A.-J. A. Street, World Appl. Sci. J., 13, 331 (2011).

    Google Scholar 

  27. A. S. Bashammakh, J. Mol. Liq., 220, 426 (2016).

    Article  CAS  Google Scholar 

  28. A.K. Bhattacharya, T. K. Naiya, S. N. Mandal and S. K. Das, Chem. Eng. J., 137, 529 (2008).

    CAS  Google Scholar 

  29. B. Kannamba, K. L. Reddy and B.V. AppaRao, J. Hazard. Mater., 175, 939 (2010).

    Article  CAS  Google Scholar 

  30. A. Naghizadeh, H. Shahabi, F. Ghasemi and A. Zarei, J. Water Health, 14, 989 (2016).

    Article  Google Scholar 

  31. M. H. Dehghani, M. M. Taher, A. K. Bajpai, B. Heibati, I. Tyagi, M. Asif, S. Agarwal and V.K. Gupta, Chem. Eng. J., 279, 344 (2015).

    Article  CAS  Google Scholar 

  32. B. Singha and S. K. Das, Colloids Surf. B-Biointerfaces, 107, 97 (2013).

    Article  CAS  Google Scholar 

  33. B. Amarasinghe and R. Williams, Chem. Eng. J., 132, 299 (2007).

    Article  CAS  Google Scholar 

  34. Y.-M. Hao, C. Man and Z.-B. Hu, J. Hazard. Mater., 184, 392 (2010).

    Article  CAS  Google Scholar 

  35. Y.-C. Chang and D.-H. Chen, J. Colloid Interface Sci., 283, 446 (2005).

    Article  CAS  Google Scholar 

  36. Y. Kuang, J. Du, R. Zhou, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 447, 85 (2015).

    Article  CAS  Google Scholar 

  37. H. Chen, Y. Zhao and A. Wang, J. Hazard. Mater., 149, 346 (2007).

    Article  CAS  Google Scholar 

  38. S. S. Madaeni and E. Salehi, Chem. Eng. J., 150, 114 (2009).

    Article  CAS  Google Scholar 

  39. M. Malakootian, S. Mohammadi, N. Amirmahani, Z. Nasiri and A. Nasiri, J. Community. Health Res., 5, 89 (2016).

    Google Scholar 

  40. B. Ramavandi, M. Shamsi and N. Abdolahi, Pajouhan Sci. J., 12, 58 (2014).

    Google Scholar 

  41. H. Esfandian, M. Parvini, B. Khoshandam and A. Samadi-Maybodi, Desalin. Water Treat, 57, 17206 (2016).

    Article  CAS  Google Scholar 

  42. J. Lin, Y. Zhan and Z. Zhu, Colloids Surf. A-Physicochem. Eng., 384, 9 (2011).

    Article  CAS  Google Scholar 

  43. W.W. Ngah, L. Teong, R. Toh and M. Hanafiah, Chem. Eng. J., 209, 46 (2012).

    Article  Google Scholar 

  44. B. Al-Rashdi, C. Tizaoui and N. Hilal, Chem. Eng. J., 183, 294 (2012).

    Article  CAS  Google Scholar 

  45. S.-M. Lee, C. Laldawngliana and D. Tiwari, Chem. Eng. J., 195, 103 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghizadeh, A., Mousavi, S.J., Derakhshani, E. et al. Fabrication of polypyrrole composite on perlite zeolite surface and its application for removal of copper from wood and paper factories wastewater. Korean J. Chem. Eng. 35, 662–670 (2018). https://doi.org/10.1007/s11814-017-0325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0325-5

Keywords

Navigation