Skip to main content
Log in

Strategies for the optimization of bead-immunoassays for the effective detection of target biomolecules

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript


Immunoassays are analytical methods using antibody-specific reactions to analyze samples. Due to recent developments in antibody technology, the scope of potential samples has expanded to not only proteins, but also low molecular-weight compounds, carbohydrates, lipids, and microorganisms. Immunoassays have the advantage of being highly sensitive, capable of detecting small amounts, and thus have potential for application in biosensors. Immunoassays using magnetic beads have been developed and can be converted to more diverse platforms than the existing limited well plate-based assay. Furthermore, magnetic bead immunoassays detect analytical samples more quickly, and are becoming one of the most suitable immunoassay tools applicable to biosensors. However, their development requires optimization for the improvement of detection ability for specific samples. Therefore, we propose a guideline for solving detection problems occurring in magnetic bead immunoassay optimization processes. It is aimed to be a good reference, enabling researchers performing such optimization more quickly and efficiently

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. I. A. Darwish, Int. J. Biomed. Sci., 2, 217 (2006).

    CAS  Google Scholar 

  2. G. A. Bonwick and C. J. Smith, Int. J. Food Sci. Technol., 39, 817 (2004).

    Article  CAS  Google Scholar 

  3. R.M. Lequin, Clin. Chem., 51, 2415 (2005).

    Article  CAS  Google Scholar 

  4. A. H. Wu, Clin. Chim. Acta, 369, 119 (2006).

    Article  CAS  Google Scholar 

  5. K.-Y. Lien, L.-Y. Hung, T.-B. Huang, Y.-C. Tsai, H.-Y. Lei and G.-B. Lee, Biosens. Bioelectron., 26, 3900 (2011).

    Article  CAS  Google Scholar 

  6. Ø.W. Rønning and A. C. Christophersen, Hybridoma, 10, 641 (1991).

    Article  Google Scholar 

  7. T. Aytur, J. Foley, M. Anwar, B. Boser, E. Harris and P.R. Beatty, J. Immunol. Methods, 314, 21 (2006).

    Article  CAS  Google Scholar 

  8. T. Jackson and R. Ekins, J. Immunol. Methods, 87, 13 (1986).

    Article  CAS  Google Scholar 

  9. P. Nikitin, P. Vetoshko and T. Ksenevich, Sens. Lett., 5, 296 (2007).

    Article  CAS  Google Scholar 

  10. S. Gundersen, I. Haagensen, T. Jonassen, K. Figenschau, N. De Jonge and A. Deelder, J. Immunol. Methods, 148, 1 (1992).

    Article  CAS  Google Scholar 

  11. F. Zhao, Q. Shen, H. Wang, X. Han and Z. Yang, Food Control, 79, 227 (2017).

    Article  CAS  Google Scholar 

  12. A. Radoi, M. Targa, B. Prieto-Simon and J.-L. Marty, Talanta, 77, 138 (2008).

    Article  CAS  Google Scholar 

  13. S. Yu, F. Yu, Y. Li, L. Liu, H. Zhang, L. Qu and Y. Wu, Food Control, 60, 500 (2016).

    Article  CAS  Google Scholar 

  14. D.-H. Jung, K. Min, Y. Jeon, W. Jang and Y. Kwon, Biochip J., 6, 293 (2012).

    Article  CAS  Google Scholar 

  15. J. Andreassen, Immunodiagnostic, 29, 22 (2005).

    Google Scholar 

  16. R. Perraut, M. Varela, B. Mbengue, M. Guillotte, O. Mercereau-Puijalon and I. Vigan-womas, J. Immunol. Tech. Infect. Dis., 4, 1 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Dokyun Na or Jonghoon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Hwang, J., Lee, D. et al. Strategies for the optimization of bead-immunoassays for the effective detection of target biomolecules. Korean J. Chem. Eng. 35, 805–811 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: