Skip to main content

Separation performance investigation of packed distillation columns using simple NEQ approach based on packing multicomponent efficiencies and effective mass transfer coefficients

Abstract

A simple non-equilibrium modeling approach is proposed to simulate multicomponent distillation process in packed columns. The real behavior of the column is simply considered by the evaluation of interphase mass transfer rate based on the overall mass transfer coefficient. Two distinct methods are used to calculate this overall coefficient including the effective mass transfer coefficient method and the packing efficiency method. The modelling procedure consists of an iterative segment-wise algorithm implemented in a MATLAB home-code. For verification, the obtained composition profiles from a structured and a random packed column are compared with reported experimental data. Comparisons show that the packing efficiency-based model could acceptably predict the experimental profiles with an average relative deviation of 18% and 25% for structured and random packed columns, respectively. This confirms that our simple non-equilibrium approach is a reliable and robust model for the performance evaluation of packed columns.

This is a preview of subscription content, access via your institution.

References

  1. G. Niggemann, S. Gruetzmann and G. Fieg, in Institution of Chemical Engineers Symposium Series, 152, 800 (2006).

    CAS  Google Scholar 

  2. G. M. Cordeiro, S. R. Dantas, L. G. S. Vasconcelos and R. P. Brito, Adv. Chem. Eng. Sci., 3, 1 (2013).

    Article  Google Scholar 

  3. J. Seader, E. J. Henley and D. Keith, Separation process principles: Chemical and biochemical operations, Hoboken, NJ, Wiley (2011).

    Google Scholar 

  4. Y. S. Lee, M. G. Kim, D. M. Ha, A. Oda, C. Ito, T. Aragaki and H. Mori, Korean J. Chem. Eng., 14, 321 (1997).

    CAS  Article  Google Scholar 

  5. Y. Amini, J. Karimi-Sabet and M. Nasr Esfahany, Chem. Eng. Tech., 40, 581 (2017).

    CAS  Article  Google Scholar 

  6. I. J. Halvorsen and S. Skogestad, J. Nat. Gas Sci. Eng., 3, 571 (2011).

    Article  Google Scholar 

  7. I. D. G. Chaves, J.R. G. López, J. L. G. Zapata, A. L. Robayo and G. R. Niño, Process analysis and simulation in chemical engineering, Springer (2016).

    Book  Google Scholar 

  8. R. Taylor, R. Krishna and H. Kooijman, Chem. Eng. Prog., 99, 28 (2003).

    CAS  Google Scholar 

  9. R. Baur, A. Higler, R. Taylor and R. Krishna, Chem. Eng. J., 76, 33 (2000).

    CAS  Article  Google Scholar 

  10. M. F. Mendes, Hetp evaluation of structured and randomic packing distillation column, INTECH Open Access Publisher (2011).

    Google Scholar 

  11. A. Gorak and A. Vogelpohl, Sep. Sci. Technol., 20, 33 (1985).

    CAS  Article  Google Scholar 

  12. C. Skowlund, M. Hlavinka, M. Lopez and C. Fitz, in Proceedings of Gas Processesors Association (2012).

    Google Scholar 

  13. T. N. Mosorinac, J. J. Djurovic and J. B. Savkovic-Stevanovic, Petroleum Coal, 53, 194 (2011).

    CAS  Google Scholar 

  14. R. Krishnamurthy and R. Taylor, Ind. Eng. Chem. Process Des. Dev., 24, 513 (1985).

    CAS  Article  Google Scholar 

  15. R. Taylor and R. Krishna, Multicomponent mass transfer, Wiley (1993).

    Google Scholar 

  16. R. Krishnamurthy and R. Taylor, AIChE J., 31, 449 (1985).

    CAS  Article  Google Scholar 

  17. R. Krishnamurthy and R. Taylor, AIChE J., 31, 456 (1985).

    CAS  Article  Google Scholar 

  18. R. Krishnamurthy and R. Taylor, AIChE J., 31, 1973 (1985).

    CAS  Article  Google Scholar 

  19. J. Aittamaa, Kemi, 8, 295 (1981).

    CAS  Google Scholar 

  20. J. Ilme, Estimating plate efficiencies in simulation of industrial scale distillation columns, Lappeenranta University of Technology (1997).

    Google Scholar 

  21. K. T. Klemola, Efficiencies in distillation and reactive distillation, Finnish Academy of Technology (1998).

    Google Scholar 

  22. K. Jakobsson and J. Aittamaa, Comparison of plate efficiency estimation models to experimental results of pilot scale: A case study, American Institute of Chemical Engineers (2001).

    Google Scholar 

  23. J. K. Ilme, K. I. Keskinen, V. L. Markkanen and J. R. Aittamaa, in Institution of Chemical Engineers Symposium Series, Hemsphere Publishing Corporation, 142, 497 (1997).

    Google Scholar 

  24. K. Jakobsson, J. Aittamaa, K. I. Keskinen and J. Ilme, in Proceedings of the International Conference on Distillation & Absorption (on CD) (2002).

    Google Scholar 

  25. K. I. Keskinen, A. Kinnunen, L. Nyström and J. Aittamaa, in Proceedings of the International Conference on Distillation & Absorption (on CD) (2002).

    Google Scholar 

  26. H. Poortalari, J. K. Sabet and F. Varaminian, Sep. Sci. Technol., 52.11, 1885 (2017).

    Article  Google Scholar 

  27. C. D. Holland, Fundamentals of multicomponent distillation, McGraw-Hill (1981).

    Google Scholar 

  28. M. Powers, D. Vickeryt, A. Arehole and R. Taylor, Computers Chem. Eng., 12, 1229 (1988).

    CAS  Article  Google Scholar 

  29. R. Waggoner and G. Loud, Computers Chem. Eng., 1, 49 (1977).

    CAS  Article  Google Scholar 

  30. A. Medina, N. Ashton and C. McDermott, Chem. Eng. Sci., 33, 331 (1978).

    CAS  Article  Google Scholar 

  31. A. Medina, N. Ashton and C. McDermott, Chem. Eng. Sci., 34, 1105 (1979).

    CAS  Article  Google Scholar 

  32. J. L. Bravo, J. Rocha and J. Fair, Hydrocarbon Process., 64, 91 (1985).

    CAS  Google Scholar 

  33. K. Onda, H. Takeuchi and Y. Okumoto, J. Chem. Eng. Jpn., 1, 56 (1968).

    CAS  Article  Google Scholar 

  34. J.-T. Lee and W.-K. Lee, Korean Chem. Eng. Res., 20, 473 (1982).

    CAS  Google Scholar 

  35. H. Mori, A. Oda, T. Aragaki and Y. Kunimoto, J. Chem. Eng. Jpn., 29, 307 (1996).

    CAS  Article  Google Scholar 

  36. K. J. Arwikar, Mass transfer in packed column absorption and multicomponent distillation, Doctoral Dissertation, University of California, Santa Barbara (1981).

    Google Scholar 

  37. B. E. Poling, J. M. Prausnitz and J. P. O’connell, The properties of gases and liquids, McGraw-hill New York (2001).

    Google Scholar 

  38. J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular thermodynamics of fluid-phase equilibria, Pearson Education (1998).

    Google Scholar 

  39. A. Danesh, Pvt and phase behaviour of petroleum reservoir fluids, Elsevier (1998).

    Google Scholar 

  40. M. Behera, Vapour liquid equillibrium modeling using unifac group contribution method and its application in distillation column design and steady state simulation, Doctoral dissertation, National Institute of Technology, Rourkela (2010).

    Google Scholar 

  41. J.-C. De Hemptinne and J.-M. Ledanois, Select thermodynamic models for process simulation: A practical guide using a three steps methodology, Editions Technip (2012).

    Book  Google Scholar 

  42. G. W. Thomson, Chem. Rev., 38, 1 (1946).

    CAS  Article  Google Scholar 

  43. J. O. Nava and R. Krishna, Chem. Eng. Process., 43, 305 (2004).

    CAS  Article  Google Scholar 

  44. A. Plus, Aspen plus user guide, Aspen Technology Limited, Cambridge, United States (2003).

    Google Scholar 

  45. A. Pavlenko, N. Pecherkin, V. Y. Chekhovich, V. Zhukov and S. Sunder, Theor. Found. Chem. Eng., 43, 1 (2009).

    CAS  Article  Google Scholar 

  46. A. Pavlenko, V. Zhukov, N. Pecherkin, V. Y. Chekhovich, S. Sunder and P. Houghton, Theor. Found. Chem. Eng., 44, 869 (2010).

    CAS  Article  Google Scholar 

  47. A. Pavlenko, X. Li, V. Zhukov, N. Pecherkin, O. Volodin, A. Surtaev, X. Gao, L. Zhang, H. Sui and H. Li, J. Eng. Phys. Thermophys., 24, 210 (2015).

    CAS  Article  Google Scholar 

  48. Ž. Olujić and H. Jansen, Chem. Eng. Res. Des., 99, 2 (2015).

    Article  Google Scholar 

  49. A. N. Pavlenko, V. E. Zhukov, N. I. Pecherkin, X. Li and H. Sui, Journal of Physics: Conference Series, IOP Publishing, 754, 042012 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Javad Karimi Sabet or Farshad Varaminian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poortalari, H., Karimi Sabet, J. & Varaminian, F. Separation performance investigation of packed distillation columns using simple NEQ approach based on packing multicomponent efficiencies and effective mass transfer coefficients. Korean J. Chem. Eng. 35, 1151–1166 (2018). https://doi.org/10.1007/s11814-017-0315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0315-7

Keywords

  • Packed Distillation Column
  • Multicomponent Separation
  • Simple Non-equilibrium Modeling
  • Overall Mass Transfer Coefficient
  • Packing Efficiency