Skip to main content
Log in

Tramadol hydrochloride delivery by regenerated cellulose nanofiber-TiO2-ZnO composites

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present work focuses on the development and investigation of new composite materials based on regenerated nanocellulose, titanium oxide (TiO2) and zinc oxide (ZnO) with potentials for drug delivery applications. The new composite was developed using dispersion method. The physicochemical properties of the composites were extensively evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analyzer and Fourier transform infrared spectroscopy (FTIR). The presence of O-H, C-H, C-O-C, Ti-O, Zn-O stretch and bend was confirmed using the FTIR, while the SEM revealed the TiO2 and ZnO immobilized on the surface of stiff and rod-like strands of regenerated nanocellulose. The XRD showed characteristic peaks at 2θ of 16.6°, 22.7°, 34.4° for nanocellulose, 17.5°, 24.5°, 32° for ZnO and 25.4°, 38°, 48.3°, 53.8° for TiO2. As the amount of the metal oxides in the composite increased, notable increase in physicochemical properties and morphology for drug delivery purpose was observed. The cumulative drug release profiles of the regenerated nanocellulose composites on tramadol hydrochloride were subjected to zero order, first-order, Higuchi and Korsmeyer-Peppas plots, and fitted most for Korsmeyer-Peppas with R2 and n value from 0.9831 to 0.9941 and 0.4188 to 0.9704, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang, T. Lin, G. Zhu, H. Yin, X. Lü, Y. Li and F. Huang, Catal. Commun., 60, 55 (2015).

    Article  CAS  Google Scholar 

  2. N. Jones, B. Ray, K.T. Ranjit and A.C. Manna, Microbiol. Lett., 279(1), 71 (2008).

    Article  CAS  Google Scholar 

  3. Y. Djaoued, S. Balaji and N. Beaudoin, J. Sol-Gel Sci. Technol., 65(3), 374 (2013).

    Article  CAS  Google Scholar 

  4. D.M. Tobaldi, R.C. Pullar, A.F. Gualtieri, M.P. Seabra and J.A. Labrincha, Acta Materialia, 61(15), 5571 (2013).

    Article  CAS  Google Scholar 

  5. H. Wang, T. Lin, G. Zhu, H. Yin, X. Lü, Y. Li and F. Huang, Catal. Commun., 60, 55 (2015).

    Article  CAS  Google Scholar 

  6. C. Schutz, J. Sort, Z. Bacsik, V. Oliynyk and E. Pellicer, Nanoparticle Hybrids, 7(10), e45828 (2012).

    Google Scholar 

  7. S. Azizi, M. B. Ahmad, M. Z. Hussein and N. A. Ibrahim, Molecules, 18, 6269 (2013).

    Article  CAS  Google Scholar 

  8. A. Snyder, Z. Bo, R. Moon, J. Rochet and L. Stanciu, J. Colloid Interface Sci., 399, 92 (2012).

    Article  Google Scholar 

  9. S. B. Tiwari, T. K. Murthy, M. Raveendra Pai, P.R. Mehta and P.B. Chowdary, AAPS PharmSciTech., 4(3), 18 (2003).

    Article  Google Scholar 

  10. A. Mohan and T. Vaishali, American J. Adv. Drug Delivery, 1(4), 435 (2013).

    Google Scholar 

  11. P.Y. Chauhan, R. S. Sapkal, V. S. Sapkal and G. S. Zamre, Int. J. Chem. Sci., 7(2), 681 (2009).

    CAS  Google Scholar 

  12. Y. Zhang, C. Liu, S. Wang, Y. Wu, Y. Meng, J. Cui and Z. Zhou, Wood Fiber Sci., 47(3), 1 (2015).

    Google Scholar 

  13. L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O’Neill and D.W. York, J. Nanopart. Res., 12(5), 1625 (2009).

    Article  Google Scholar 

  14. F. Kianfar, M. Antonijevic, B. Chowdhry and J.S. Boateng, Colloids Surf., B Biointerfaces, 103, 99 (2013).

    Article  CAS  Google Scholar 

  15. M.C. Straccia, G. G. Ayal, I. Romano, A. Oliva and P. Laurienzo, Marine Drugs, 13, 2890 (2015).

    Article  CAS  Google Scholar 

  16. M. Fentie, A. Belete and T. G. Mariam, J. Nanomedicine Nanotechnol., 6, 262 (2015).

    Google Scholar 

  17. T. Sivakumar, P. Venkatesan, R. Manavalan and K. Valliappan, J. Basic Clinical Pharmacy, 69(1), 154 (2007).

    CAS  Google Scholar 

  18. A. S. Reddy and A.K. Sailaja, World J. Pharmacy Pharmaceutical Sci., 3(6), 1781 (2014).

    Google Scholar 

  19. P. Sudhakar, S. Bhagyamma, S. Siraj, K. Sekharnath, K. Rao and M. Subha, J. Appl. Pharm. Sci., 5(2), 51 (2015).

    Article  CAS  Google Scholar 

  20. F. Kianfar, M. Antonijevic, B. Chowdhry and J. S. Boateng, Colloids Surf. B: Biointerfaces, 103, 99 (2013).

    Article  CAS  Google Scholar 

  21. M.C. Straccia, G. G. Ayal, I. Romano, A. Oliva and P. Laurienzo, Marine Drugs., 13, 2890 (2015).

    Article  CAS  Google Scholar 

  22. N. Garud and A. Garud, Tropical J. Pharmaceutical Res., 11(4), 577 (2012).

    Article  CAS  Google Scholar 

  23. M. Pandey, M. C. I. Mohd Amin, N. Ahmad and M. M. Abeer, Int. J. Polym. Sci., 2013, 1 (2013).

    Article  Google Scholar 

  24. M.M. Ibrahim, Y. Tamer, A. Fahmy, E. I. Salaheldin, F. Mobarak, M. A. Youssef and M.R. Mabrook, J. American Sci., 10(12), 108 (2014).

    Google Scholar 

  25. P.A. Rodnyi and I.V. Khodyuk, Optics Spectroscopy, 111(5), 776 (2011).

    Article  CAS  Google Scholar 

  26. S.M. Soosen, B. Lekshmi and K. C. George, ISSN: 0973-7464, SB Academic Review, 16(1&2), 57 (2009).

    Google Scholar 

  27. H. Kumar and R. Rani, Int. Lett. Chem., Phys. Astronomy, 14, 26 (2013).

    Article  Google Scholar 

  28. A. Janotti and C. G. Van de Walle, Reports on Progress in Physics, 72(126501), 29 (2009).

    Google Scholar 

  29. L. Qin, C. Shing, S. Sawyer and P. S. Dutta, Optical Mater., 33, 359 (2011).

    Article  CAS  Google Scholar 

  30. M.A. Pugachevskii, Technical Phys. Lett., 39(1), 36 (2013).

    Article  CAS  Google Scholar 

  31. T.M. Hammad, J. K. Salem and R. G. Harrison, Rev. Adv. Mater. Sci., 22, 74 (2009).

    CAS  Google Scholar 

  32. T.A. Egerton, Molecules, 19, 18192 (2011).

    Article  Google Scholar 

  33. L.M. Martor Ano, C. J. Stork and Y.V. Li, J. Cosmetic Dermatology, 9, 276 (2010).

    Article  Google Scholar 

  34. C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo and O. J. Rojas, Current Opinion in Colloid Interface Sci., 19, 383 (2014).

    Article  CAS  Google Scholar 

  35. S.B. Pal and J. Dutta, Nanoscience Nanotechnology-Asia, 2, 90 (2012).

    Google Scholar 

  36. H. Yang, S. Zhu and N. Pan, J. Appl. Polym. Sci., 92, 3201 (2004).

    Article  CAS  Google Scholar 

  37. M. S. Nazir, B.A. Wahjoedi, A.W. Yussof and M. A. Abdulah, Bioresources, 8(2), 2161 (2013).

    Article  CAS  Google Scholar 

  38. A. Alemdar and M. Sain, Bioresour. Technol., 99(6), 1664 (2008).

    Article  CAS  Google Scholar 

  39. K. Saelee, N. Yingkamhaeng, T. Nimchua and P. Sukyai, Extraction and Characterization of cellulose from sugra cane bagasse by using environmental friendly method. The 26th Annual meeting of the Thai Society for Biotechnology and International Conference (2014).

    Google Scholar 

  40. A.W. Morawski, E. Kusiak-Nejman, J. Przepiorski, R. Kordala and J. Pernak, Cellulose, 20, 1293 (2013).

    Article  CAS  Google Scholar 

  41. O. L. Galkina, A. Sycheva, A. Blagodatskiy, G. Kaptay, V. L. Katanaev, G. A. Seisenbaeva, V. G. Kessler and A.V. Agafonov, J. Surf. Coat. Technol., 253, 171 (2014).

    Article  CAS  Google Scholar 

  42. Q. Yu, P. Wu, L. Li, T. Liu and L. Zhao, Green Chem., 10, 1061 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwaseyi Damilare Saliu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olatunji, G.A., Kola-Mustapha, A.T., Saliu, O.D. et al. Tramadol hydrochloride delivery by regenerated cellulose nanofiber-TiO2-ZnO composites. Korean J. Chem. Eng. 35, 784–791 (2018). https://doi.org/10.1007/s11814-017-0314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0314-8

Keywords

Navigation