Skip to main content

Advertisement

Log in

Intensification of the processes of dehydrogenation and dewaxing of middle distillate fractions by redistribution of hydrogen between the units

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The dehydrogenation and dewaxing of hydrocarbons of middle-distillate fractions, which proceed in the hydrogen medium, are of great importance in the petrochemical and oil refining industries. They increase oil refining depth and allow producing gasoline, kerosene, and diesel fractions used in the production of hydrocarbon fuels, polymer materials, synthetic detergents, rubbers, etc. Herewith, in the process of dehydrogenation of hydrocarbons of middle distillate fractions (C9–C14) hydrogen is formed in the reactions between hydrocarbons, and the excess of hydrogen slows the target reaction of olefin formation and causes the shift of thermodynamic equilibrium to the initial substances. Meanwhile, in the process of hydrodewaxing of hydrocarbons of middle distillate fractions (C5–C27), conversely, hydrogen is a required reagent in the target reaction of hydrocracking of long-chain paraffins, which ensures required feedstock conversion for production of low-freezing diesel fuels. Therefore, in this study we suggest the approach of intensification of the processes of dehydrogenation and dewaxing of middle distillate fractions by means of redistribution of hydrogen between the two units on the base of the influence of hydrogen on the hydrocarbon transformations using mathematical models. In this study we found that with increasing the temperature from 470 °C to 490 °C and decreasing the hydrogen/feedstock molar ratio in the range of 8.5/1.0 to 6.0/1.0 in the dehydrogenation reactor, the production of olefins increased by 1.45–1.55%wt, which makes it possible to reduce hydrogen consumption by 25,000 Nm3/h. Involvement of this additionally available hydrogen in the amount from 10,000 to 50,000 Nm3/h in the dewaxing reactor allows increasing the depth of hydrocracking of long-chain paraffins of middle distillate fractions, and, consequently improving low-temperature properties of produced diesel fraction. In such a way cloud temperature and freezing temperature of produced diesel fraction decrease by 1–4 °C and 10–25 °C (at the temperature of 300 °C and 340 °C respectively). However, when the molar ratio hydrogen/hydrocarbons decreases from 8.5/1.0 to 6.0/1.0 the yield of side products in the dehydrogenation reactor increases: the yield of diolefins increases by 0.1–0.15%wt, the yield of coke increases by 0.07–0.18%wt depending on the feedstock composition, which is due to decrease in the content of hydrogen, which hydrogenates intermediate products of condensation (the coke of amorphous structure). This effect can be compensated by additional water supply in the dehydrogenation reactor, which oxidizes the intermediate products of condensation, preventing catalyst deactivation by coke. The calculations with the use of the model showed that at the supply of water by increasing portions simultaneously with temperature rise, the content of coke on the catalyst by the end of the production cycle comprises 1.25–1.56%wt depending on the feedstock composition, which is by 0.3–0.6%wt lower that in the regime without water supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Speight, The Refinery of the Future, Elsevier (2011).

    Book  Google Scholar 

  2. D. Stratiev and K. Petkov, Hydrocarbon Process., 88(9), 93 (2009).

    CAS  Google Scholar 

  3. G. Phillips and F. Liu, Hydrocarbon Eng., 8(9), 63 (2003).

    Google Scholar 

  4. M. S. Rana, V. Sámano, J. Ancheyta and J. A. I. Diaz, Fuel, 86(9), 1216 (2007).

    Article  CAS  Google Scholar 

  5. P. Leprince, Petroleum refining. Volume 3. Conversion Processes, Editions Technip (2000).

    Google Scholar 

  6. D. S. J. Jones and P.R. Pujado, Handbook of Petroleum Processing, Springer (2006).

    Book  Google Scholar 

  7. M. R. Riazi, Characterization and Properties of Petroleum Fractions, ASTM manual series (2005).

    Book  Google Scholar 

  8. J. Ancheyta, A. Alvarez-Majmutov and C. Leyva, Hydrotreating of oil fractions: Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications, John Wiley & Sons, Inc, New Jersey, Canada (2016).

    Google Scholar 

  9. I. Sharafutdinov, D. Stratiev, I. Shishkova, R. Dinkov, A. Batcharov, P. Petkov and N. Rudnev, Fuel, 96, 556 (2012).

    Article  CAS  Google Scholar 

  10. A. L. Lown, L. Peerboom, S. Mueller, J. Anderson, D. Miller and C. Lira, Fuel, 117, 544 (2014).

    Article  CAS  Google Scholar 

  11. A. Anwar and A. Garforth, Fuel, 173, 189 (2016).

    Article  CAS  Google Scholar 

  12. S. V. Lysenko, A. B. Kulikov, M. I. Onishchenko, E. V. Rakhmanov and E. A. Karakhanov, Moscow Univ. Chem. Bull. (Engl. Transl.), 71(1), 37 (2016).

    Article  Google Scholar 

  13. T.-T. Bao, B. Zhou, J. Deng and Z.-J Wu, J. Shanghai Jiaotong University (Science), 19(6), 721 (2014).

    Article  Google Scholar 

  14. J. G. Speight, Hydrogen in Refineries Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (Book Chapter), CRC Press (2016).

    Google Scholar 

  15. L. C. Castañeda, A. D. Muñoz and J. Ancheyta, Catal. Today, 220-222, 248 (2014).

    Article  Google Scholar 

  16. R. Long, K. Picioccio and A. Zagoria, Petroleum Technology Quarterly, 16(3) (2011).

    Google Scholar 

  17. F. E. Cruz and Jr. S. De Oliveira, Int. J. Thermodyn., 11(4), 187 (2008).

    Google Scholar 

  18. J. Docekal, Int. J. Hydrogen Energy, 11(11), 709 (1986).

    Article  CAS  Google Scholar 

  19. L. C. Castañeda, J. A. D. Muñoz and J. Ancheyta, Fuel, 90(12), 3593 (2011).

    Article  Google Scholar 

  20. X. Jie, S. Gonzalez-Cortes, T. Xiao, J. Wang, B. Yao, D. R. Slocombe, H. A. Al-Megren, J. R. Dilworth, J. M. Thomas and P. P. Edwards, Angew. Chem., Int. Ed., 56(34), 10170 (2017).

    Article  CAS  Google Scholar 

  21. L. Wu, X. Liang, L. Kang and Y. Liu, Chin. J. Chem. Eng., 25(8), 1061 (2017).

    Article  CAS  Google Scholar 

  22. S. Sadighi, A. Ahmad and M. Rashidzadeh, Korean J. Chem. Eng., 27(4), 1099 (2010).

    Article  CAS  Google Scholar 

  23. G. Zahedi, H. Yaqubi and M. Ba-Shammakh, Appl. Catal., A, 358, 1 (2009).

    Article  CAS  Google Scholar 

  24. R. Hayati, S. Z. Abghari, S. Sadighi and M. Bayat, Korean J. Chem. Eng., 32(4), 629 (2015).

    Article  CAS  Google Scholar 

  25. J. J. Verstraete, K. Le Lannic and I. Guibard, Chem. Eng. Sci., 62(18–20), 5402 (2007).

    Article  CAS  Google Scholar 

  26. A. Alvarez and J. Ancheyta, Appl. Catal., A, 351(2), 148 (2008).

    Article  CAS  Google Scholar 

  27. L. Sunggyu, Encyclopedia of Chemical Processing, CRC Press (2005).

    Google Scholar 

  28. G. A. Olah, Hydrocarbon Chemistry, Wiley, New York (2002).

    Google Scholar 

  29. S. B. He. Studies on the catalysts and the coke deposition behavior of the dehydrogenation of long chain paraffins (C 10-C 19 ), Dalian Institute of Chemical Physics, Chinese Academy of Sciences (2009).

    Google Scholar 

  30. D. Sanfilippo and I. Miracca, Catal. Today, 111, 133 (2006).

    Article  CAS  Google Scholar 

  31. R. S. París, M. E. L’Abbatea, L. F. Liotta, V. Montes, J. Barrientos, F. Regali, A. Ahoe, M. Boutonnet and S. Järås, Catal. Today, 275, 141 (2016).

    Article  Google Scholar 

  32. R. A. Rakoczy and P. M. Morse, Hydrocarbon Processing, 92(7) (2013).

    Google Scholar 

  33. E. Frantsina, N. Belinskaya and N. Popova, MATEC Web of Conferences, 85, 01023 (2016).

    Article  Google Scholar 

  34. E. V. Frantsina, E. N. Ivashkina, E. D. Ivanchina and R. V. Romanovskii, Chem. Eng. J., 238, 224 (2015).

    Article  Google Scholar 

  35. N. S. Belinskaya, E. V. Frantsina and E. D. Ivanchina, Chem. Eng. J., 329, 283 (2017).

    Article  CAS  Google Scholar 

  36. E. N. Ivashkina, E. V. Frantsina, R. V. Romanovsky, I. M. Dolganov, E. D. Ivanchina and A. V. Kravtsov, Catalysis in Industry, 4(2), 110 (2012).

    Article  Google Scholar 

  37. A. V. Kravtsov, E. D. Ivanchina, E. N. Ivashkina, E. V. Frantsina, S. V. Kiseleva and R. V. Romanovskii, Pet. Chem., 53(4), 267 (2013).

    Article  CAS  Google Scholar 

  38. N. S. Belinskaya, E. V. Frantsina, E. D. Ivanchina, N. V. Popova and N. E. Belozertseva, Pet. Coal, 58(7), 695 (2016).

    Google Scholar 

  39. N. Chang and Z. Gu, Korean J. Chem. Eng., 31(5), 780 (2014).

    Article  CAS  Google Scholar 

  40. S. Yoon, W. C. Choi, Y.-K. Park, H. Y. Kim and C. W. Lee, Korean J. Chem. Eng., 27(1), 62 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya Frantsina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frantsina, E., Belinskaya, N. & Ivanchina, E. Intensification of the processes of dehydrogenation and dewaxing of middle distillate fractions by redistribution of hydrogen between the units. Korean J. Chem. Eng. 35, 337–347 (2018). https://doi.org/10.1007/s11814-017-0284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0284-x

Keywords

Navigation