Skip to main content

Advertisement

Log in

Adsorptive separation of carbon dioxide from flue gas using mesoporous MCM-41: A molecular simulation study

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Realistic molecular models of MCM-41 have been developed and used for studying the separation of carbon dioxide from flue gas mixtures using grand canonical Monte Carlo simulations. The simulated X-ray diffraction pattern and surface area of the models are in good agreement with experimental results reported in literature. Adsorption of pure carbon dioxide was studied on the three different models at two different temperatures, 273.2 K and 303.2 K. Isosteric heats of adsorption of CO2 calculated from the simulations were in the range 20–25 kJ/mol, which matches well with reported experimental values. The simulated CO2 adsorption isotherms showed good agreement with experimental isotherms at both the temperatures for two of the models, which were selected for further mixture adsorption studies. Binary CO2/N2 adsorption simulations were performed at different bulk gas compositions, and the selectivities of CO2 over N2 were observed to be in the range 4-10. Further studies on adsorption of ternary and quaternary bulk gas mixtures containing water vapor and O2 in addition to CO2 and N2 did not reveal any significant effect on CO2 adsorption and CO2-N2 selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Mason, T. M. McDonald, T. H. Bae, J. E. Bachman, K. Sumida, J. J. Dutton, S. S. Kaye and J. R. Long, J. Am. Chem. Soc., 137, 4787 (2015).

    Article  CAS  Google Scholar 

  2. Y. F. He and N. A. Seaton, Langmuir, 19, 10132 (2003).

    Article  CAS  Google Scholar 

  3. Y. F. He and N. A. Seaton, Langmuir, 22, 1150 (2006).

    Article  CAS  Google Scholar 

  4. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710 (1992).

    Article  CAS  Google Scholar 

  5. Z. H. Luan, C. F. Cheng, W. Z. Zhou and J. Klinowski, J. Phys. Chem., 99, 1018 (1995).

    Article  CAS  Google Scholar 

  6. P. B. Amama, S. Lim, D. Ciuparu, Y. H. Yang, L. Pfefferle and G. L. Haller, J. Phys. Chem. B, 109, 2645 (2005).

    Article  CAS  Google Scholar 

  7. J. H. Yun, T. Duren, F. J. Keil and N. A. Seaton, Langmuir, 18, 2693 (2002).

    Article  CAS  Google Scholar 

  8. S. Zhuo, Y. Huang, J. Hu, H. Liu, Y. Hu and J. Jiang, J. Phys. Chem. C, 112, 11295 (2008).

    Article  CAS  Google Scholar 

  9. S. Builes and L. F. Vega, J. Phys. Chem. C, 116, 3017 (2012).

    Article  CAS  Google Scholar 

  10. Y. Jing, L. Wei, Y. Wang and Y. Yu, Chem. Eng. J., 220, 264 (2013).

    Article  CAS  Google Scholar 

  11. A. Pajzderska, M. A. Gonzalez, J. Mielcarek and J. Wasicki, J. Phys. Chem. C, 118, 23701 (2014).

    Article  CAS  Google Scholar 

  12. H. Linh Ngoc, Y. Schuurman, D. Farrusseng and B. Coasne, J. Phys. Chem. C, 119, 21547 (2015).

    Article  Google Scholar 

  13. Materials studio, Accerlys Inc., San Diego, U. S. A.

  14. R. T. Downs and D. C. Palmer, Am. Mineral., 79, 9 (1994).

    CAS  Google Scholar 

  15. P. Ugliengo, M. Sodupe, F. Musso, I. J. Bush, R. Orlando and R. Dovesi, Adv. Mater., 20, 4579 (2008).

    Article  CAS  Google Scholar 

  16. S. Loganathan, M. Tikmani and A. K. Ghoshal, Langmuir, 29, 3491 (2013).

    Article  CAS  Google Scholar 

  17. F. Tielens, C. Gervais, J. F. Lambert, F. Mauri and D. Costa, Chem. Mater., 20, 3336 (2008).

    Article  CAS  Google Scholar 

  18. S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem., 94, 8897 (1990).

    Article  CAS  Google Scholar 

  19. B. A. Wells and A. L. Chaffee, J. Chem. Theory Comput., 11, 3684 (2015).

    Article  CAS  Google Scholar 

  20. A. K. Rappé and W. A. Goddard III, J. Phys. Chem., 95, 3358 (1991).

    Article  Google Scholar 

  21. M. L. Connolly, J. Appl. Crystallogr., 16, 548 (1983).

    Article  CAS  Google Scholar 

  22. D. Dubbeldam, A. Torres-Knoop and K. S. Walton, Mol. Simul., 39, 1253 (2013).

    Article  CAS  Google Scholar 

  23. M. MG, Monte Carlo for complex chemical systems (MCCCS) towhee, version 6. 2. 12. (2010).

  24. J. J. Potoff and J. I. Siepmann, AIChE J., 47, 1676 (2013).

    Article  Google Scholar 

  25. H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem., 91, 6269 (1987).

    Article  CAS  Google Scholar 

  26. L. Zhang and J. I. Siepmann, Theor. Chem. Acc., 115, 391 (2006).

    Article  CAS  Google Scholar 

  27. D. Frenkel and B. Smit, Understanding Molecular Simulation From Algorithms to Applications, Academic press, San Diego (1996).

    Google Scholar 

  28. K. A. Northcott, K. Miyakawa, S. Oshima, Y. Komatsu, J. M. Perera and G. W. Stevens, Chem. Eng. J., 157, 25 (2010).

    Article  CAS  Google Scholar 

  29. S. Oshima, J. M. Perera, K. A. Northcott, H. Kokusen, G. W. Stevens and Y. Komatsu, Sep. Sci. Technol., 41, 1635 (2006).

    Article  CAS  Google Scholar 

  30. Y. N. Xu and W. Y. Ching, Phys. Rev. B: Condens. Matter, 44, 11048 (1991).

    Article  CAS  Google Scholar 

  31. T. J. H. Vlugt, E. Garcia-Perez, D. Dubbeldam, S. Ban and S. Calero, J. Chem. Theory Comput., 4, 1107 (2008).

    Article  CAS  Google Scholar 

  32. A. Poursaeidesfahani, A. Torres-Knoop, M. Rigutto, N. Nair, D. Dubbeldam and T. J. H. Vlugt, J. Phys. Chem. C, 120, 1727 (2016).

    Article  CAS  Google Scholar 

  33. S. Zhou, C. Guo, Z. Wu, M. Wang, Z. Wang, S. Wei, S. Li and X. Lu, Appl. Surf. Sci., 410, 259 (2017).

    Article  CAS  Google Scholar 

  34. B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo and S. Deng, Environ. Sci. Technol., 47, 5474 (2013).

    Article  CAS  Google Scholar 

  35. Q. Yang, C. Xue, C. Zhong and J.-F. Chen, AIChE J., 53, 2832 (2007).

    Article  CAS  Google Scholar 

  36. H. Wang, Y. Duan, Y. Li, Y. Xue and M. Liu, Chem. Eng. J., 300, 230 (2016).

    Article  CAS  Google Scholar 

  37. E. Di Biase and L. Sarkisov, Carbon, 94, 27 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Kumar, A. Adsorptive separation of carbon dioxide from flue gas using mesoporous MCM-41: A molecular simulation study. Korean J. Chem. Eng. 35, 535–547 (2018). https://doi.org/10.1007/s11814-017-0283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0283-y

Keywords

Navigation