Skip to main content
Log in

High performance removal of methyl mercaptan on metal modified activated carbon

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A series of coconut shell activated carbon catalysts, modified by metal oxides, were prepared by an ultrasound-assisted incipient wetness method for the removal of methyl mercaptan (CH3SH). The catalysts were investigated using XRD, BET, XPS, TEM and TA.The results showed that the catalyst combined with 2 wt% Fe loading and iron (Fe): copper (Cu) (mole ratio) 10 : 3, and calcination at 300 °C had a superior removal efficiency. The high activity could be attributed to the generation of highly dispersed Fe-Cu nanocomposites. The results revealed that calcination temperature not only influenced the chemical states and nanocomposite size of iron and copper, but also affected the pore structures of the catalysts. Compared with Fe/AC, the interaction between the iron and copper oxides resulted in smaller nanoparticles and high dispersion for Fe-Cu/AC. Product analysis results suggested dimethyl disulfide, metal methanesulfonates and methyl thiolates were the oxidation products which adsorbed on the activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ding, T. Liu and X. Li, J. Chem. Technol. Biot., 89, 455 (2014).

    Article  CAS  Google Scholar 

  2. M. C. Iliuta and F. Larachi, J. Chem. Data, 52, 2 (2007).

    Article  CAS  Google Scholar 

  3. M. E. Whelan, D. Min and R. C. Rhew, Atmos. Environ., 73, 131 (2013).

    Article  CAS  Google Scholar 

  4. T. Wu, X. Wang, D. Li and Z. Yi, Atmos. Environ., 44, 5065 (2010).

    Article  CAS  Google Scholar 

  5. Z. T. Liu, J. L. Zhou and B. J. Zhang, J. Mol. Catal., 94, 255 (1994).

    Article  CAS  Google Scholar 

  6. W. Cai, G. Lu, J. He and Y. Lan, Ceram. Int., 38, 3167 (2012).

    Article  CAS  Google Scholar 

  7. C. Cammarano, E. Huguet, R. Cadours, C. Leroi, B. Coq and V. Hulea, Appl. Catal. B., 156-157, 128 (2014).

    Article  CAS  Google Scholar 

  8. M. G. Conti-Ramsden, K. Nkrumah-Amoako, N.W. Brown and E. P. L. Roberts, Adsorption, 19, 989 (2013).

    Article  CAS  Google Scholar 

  9. E. Huguet, B. Coq, R. Durand, C. Leroi, R. Cadours and V. Hulea, Appl. Catal. B., 134-135, 344 (2013).

    Article  CAS  Google Scholar 

  10. R.C. van Leerdam, P. L. F. van den Bosch, P. N. L. Lens and A. J. H. Janssen, Environ. Sci. Technol., 45, 1320 (2011).

    Article  Google Scholar 

  11. A. Bagreev, J. A. Menendez, I. Dukhno, Y. Tarasenko and T. J. Bandosz, Carbon, 43, 208 (2005).

    Article  CAS  Google Scholar 

  12. S. Bashkova, A. Bagreev and T. J. Bandosz, Environ. Sci. Technol., 36, 2777 (2002).

    Article  CAS  Google Scholar 

  13. K. Hiroshi, K. Isao, H. Mitsuyo and S. Makoto, Appl. Catal. B., 6, 255 (1995).

    Article  Google Scholar 

  14. H. Cui and S.Q. Turn, Appl. Catal. B., 88, 25 (2009).

    Article  CAS  Google Scholar 

  15. X. Liu, J. Guo, Y. Chu, D. Luo, H. Yin, M. Sun and R. Yavuz, Fuel, 123, 93 (2014).

    Article  CAS  Google Scholar 

  16. S. Bashkova, A. Bagreev and T. J. Bandosz, Langmuir, 19, 6115 (2003).

    Article  CAS  Google Scholar 

  17. D. J. Kim and J. E. Yie, J. Colloid Interface Sci., 283, 311 (2005).

    Article  CAS  Google Scholar 

  18. N. Laosiripojana, W. Sutthisripok, S. Charojrochkul and S. Assabumrungrat, Appl. Catal. A., 478, 9 (2014).

    Article  CAS  Google Scholar 

  19. S. Lee, W.M. A. W. Daud and M. Lee, J. Ind. Eng. Chem., 16, 973 (2010).

    Article  CAS  Google Scholar 

  20. H. Tamai, H. Nagoya and T. Shiono, J. Colloid Interface Sci., 300, 814 (2006).

    Article  CAS  Google Scholar 

  21. E. Vega, J. Lemus, A. Anfruns, R. Gonzalez-Olmos, J. Palomar and M. J. Martin, J. Hazard. Mater., 258-259, 77 (2013).

    Article  CAS  Google Scholar 

  22. S. Zhao, H. Yi, X. Tang, F. Gao, B. Zhang, Z. Wang and Y. Zuo, J. Clean. Prod., 87, 856 (2015).

    Article  CAS  Google Scholar 

  23. X. Wang, J. Qiu, P. Ning, X. Ren, Z. Li, Z. Yin, W. Chen and W. Liu, J. Hazard. Mater., 229-230, 128 (2012).

    Article  CAS  Google Scholar 

  24. H. Yi, K. Li, X. Tang, P. Ning, J. Peng, C. Wang and D. He, J. Chem. Eng., 230, 220 (2013).

    Article  CAS  Google Scholar 

  25. T. Zhang, J. Liu, D. Wang, Z. Zhao, Y. Wei, K. Cheng, G. Jiang and A. Duan, Appl. Catal. B., 148-149, 520 (2014).

    Article  CAS  Google Scholar 

  26. S. Bashkova, A. Bagreev and T. J. Bandosz, Catal. Today, 99, 323 (2005).

    Article  CAS  Google Scholar 

  27. D. He, H. Yi, X. Tang, P. Ning, K. Li, H. Wang and S. Zhao, J. Mol. Catal. A-Chem., 357, 44 (2012).

    Article  CAS  Google Scholar 

  28. J. Guo, X. Liu, D. Luo, H. Yin, J. Li and Y. Chu, Ind. Eng. Chem. Res., 54, 1261 (2015).

    Article  CAS  Google Scholar 

  29. Z. Cui, J. Fan, H. Duan, J. Zhang, Y. Xue and Y. Tan, Korean J. Chem. Eng., 34, 29 (2017).

    Article  CAS  Google Scholar 

  30. A. Rey, M. Faraldos, J.A. Casas, J.A. Zazo, A. Bahamonde and J. J. Rodriguez, Appl. Catal. B., 86, 69 (2009).

    Article  CAS  Google Scholar 

  31. M. Descostes, F. Mercier, N. Thromat, C. Beaucaire and M. Gautier-Soyer, Appl. Surf. Sci., 165, 288 (2000).

    Article  CAS  Google Scholar 

  32. G. Zhang, Z. Li, H. Zheng, T. Fu, Y. Ju and Y. Wang, Appl. Catal. B., 179, 95 (2015).

    Article  CAS  Google Scholar 

  33. Z. Hu, Y. Zhu, Z. Gao, G. Wang, Y. Liu, X. Liu and Z. Yuan, Chem. Eng. J., 302, 23 (2016).

    Article  CAS  Google Scholar 

  34. R. Benassi, Theor. Chem. Acc., 112, 95 (2004).

    Article  CAS  Google Scholar 

  35. D.G. Castner, Langmuir, 12, 5083 (1996).

    Article  CAS  Google Scholar 

  36. D.R. Mullins and T. S. McDonald, Surf. Sci., 602, 1280 (2008).

    Article  CAS  Google Scholar 

  37. T. S. Rufael, D.R. Huntley, D.R. Mullins and J. L Gland, J. Phys. Chem. B., 102, 3431 (1998).

    Article  CAS  Google Scholar 

  38. Y. Lin, T. Tseng and H. Chu, Appl. Catal. A., 469, 221 (2014).

    Article  CAS  Google Scholar 

  39. F. Adib, A. Bagreev and T. J. Bandosz, J. Colloid. Interf. Sci., 214, 407 (1999).

    Article  CAS  Google Scholar 

  40. F. Adib, A. Bagreev and T. J. Bandosz, Environ. Sci. Technol., 34, 686 (2000).

    Article  CAS  Google Scholar 

  41. A. Bagreev, J. Angel Menendez, I. Dukhno, Y. Tarasenko and T. J. Bandosz, Carbon., 42, 469 (2004).

    Article  CAS  Google Scholar 

  42. M. Wang, Z. Wang, Z. Sun and H. Jiang, React. Kinet. Catal. Lett., 84, 223 (2005).

    Article  CAS  Google Scholar 

  43. M. Wang, Z. G. Song, H. Jiang and H. Gong, J. Therm. Anal. Calorim., 98, 801 (2009).

    Article  CAS  Google Scholar 

  44. Z. Wu, D. B. Dreisinger, H. Urch and S. Fassbender, Hydrometallurgy, 142, 121 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ke.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Ke, M., Yu, P. et al. High performance removal of methyl mercaptan on metal modified activated carbon. Korean J. Chem. Eng. 35, 137–146 (2018). https://doi.org/10.1007/s11814-017-0272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0272-1

Keywords

Navigation