Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 941–955 | Cite as

Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM)

  • Sunghoon Kim
  • Daeho Ko
  • Junyoung Mun
  • Tae-hyun Kim
  • Jiyong Kim
Separation Technology, Thermodynamics
  • 60 Downloads

Abstract

Energy source diversification through development of coalbed methane (CBM) resources is one of the key strategies to make a country less dependent on simple energy resources (e.g., crude oil, natural gas, nuclear energy etc.). Especially, enhanced coalbed methane (ECBM) technology can be expected to secure the resources as well as environmental benefits. However, the raw CBM gas obtained from CO2 ECBM contains a considerable amount of CO2, and the CO2 content increases depending on the operation time of the facility. Considering the changes of the CBM composition, we developed process simulations of the CBM separation & purification processes based on the amine absorption to meet the design specifications (CH4 purity of product stream: 99%, CH4 recovery rate: 99%) with different CBM feed gas conditions. Using the developed simulation model, we performed an economic evaluation using unit methane production cost (MPC) considering coal-swelling types and facility operation time, and established an operation strategy under different natural gas market scenarios.

Keywords

Energy Diversification Coal Bed Methane Gas Separation Energy System Economic Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Mohr and G. Evans, Energy Policy, 38(1), 265 (2010).CrossRefGoogle Scholar
  2. 2.
    A. Midilli, M. Ay, I. Dincer and M. Rosen, Renewable Sustainable Energy Rev., 9(3), 255 (2005).CrossRefGoogle Scholar
  3. 3.
    B. Liang, W. Sun, Q. Qi and H. Li, Int. J. Min. Sci. Technol., 22(6), 891 (2012).CrossRefGoogle Scholar
  4. 4.
    C. Jenkins, C. Boyer, J. Pet. Technol., 60(2), 92 (2008).CrossRefGoogle Scholar
  5. 5.
    K. Aminian and S. Ameri, J. Nat. Gas Sci. Eng., 1(1-2), 25 (2009).CrossRefGoogle Scholar
  6. 6.
    D. Luo and Y. Dai, Energy Policy, 37(10), 3883 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Kim, W. Sung and J. Han, J. Korean Inst. Gas, 17(2), 36 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Al-Jubori, S. Johnston, C Boyer, S. Lambert, O. Bustos and J. Pashin, Oilfield Rev., 21, 4 (2009).Google Scholar
  9. 9.
    C. Sinayuc, J. Shi, C. Imrie, SA. Syed, A. Korre and S. Durucan, Energy Procedia, 4, 2150 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Sayyafzadeh, A. Keshavarz, A. Alias, K. Dong and M. Manser, J. Nat. Gas Sci. Eng., 27(2), 1205 (2015).CrossRefGoogle Scholar
  11. 11.
    P. Fulton, C. Parente, B. Rogers, N. Shah and A. Reznik, A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection (1980).CrossRefGoogle Scholar
  12. 12.
    A. Ranathunga, M. Perera, P. Ranjith and C. Wei, Fuel, 189, 391 (2017).CrossRefGoogle Scholar
  13. 13.
    U. Zahid, Y. Lim, J. Jung and C. Han, Korean J. Chem. Eng., 28(3), 674 (2011).CrossRefGoogle Scholar
  14. 14.
    C. Liu, Y. Dang, Y. Zhou, J. Liu, Y. Sun and W. Su, Adsorpt., 18(3-4), 321 (2012).CrossRefGoogle Scholar
  15. 15.
    D. Ko, Ind. Eng. Chem. Res., 55(4), 1013 (2016).CrossRefGoogle Scholar
  16. 16.
    E. Robertson, Idaho National Laboratory, INL/EXT-08-13816, (2007).Google Scholar
  17. 17.
    G. Zhang, S. Fan, B. Hua, Y. Wang, T. Huang and Y. Xie, J. Energy Chem., 22(3), 533 (2013).CrossRefGoogle Scholar
  18. 18.
    X. Wei, P. Massarotto, G. Wang, V. Rudolph and S. Golding, Fuel, 89(5), 1110 (2010).CrossRefGoogle Scholar
  19. 19.
    F. Zhou, W. Hou, G. Allinson, J. Wu, J. Wang and Y. Cinar, Int. J. Greenhouse Gas Control, 19, 26 (2013).CrossRefGoogle Scholar
  20. 20.
    E. First, M. Hasan and C. Floudas, AIChE J., 60(5), 1767 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Day, R. Fry and R. Sakurovs, Int. J. Coal Geol., 74(1), 41 (2008).CrossRefGoogle Scholar
  22. 22.
    Z. Chen, Z. Pan, J. Liu, L. Connell and D. Elsworth, Int. J. Greenhouse Gas Control, 5(5), 1284 (2011).CrossRefGoogle Scholar
  23. 23.
    J. Xie, M. Gao, B. Yu, R. Zhang and W. Jin, Geomech. Geophys. Geoenergy and Geo-resour., 1(1-2), 15 (2015).CrossRefGoogle Scholar
  24. 24.
    C. Karacan, Int. J. Coal Geol., 72(3-4), 209 (2007).CrossRefGoogle Scholar
  25. 25.
    S. Karacan and F. Karacan, Sci. Technol. Online, 2(2), (2012).Google Scholar
  26. 26.
    S. Park, H. Song, M. Lee and J. Park, Korean J. Chem. Eng., 31(1), 125 (2014).CrossRefGoogle Scholar
  27. 27.
    T. He and Y. Ju, Appl. Energy, 115, 17 (2014).CrossRefGoogle Scholar
  28. 28.
    W. Nie, S. J. Peng, J. Xu, L.R. Liu, G. Wang and J. B. Geng, Sci. World J., 2014(1), Article ID 185608 (2014).Google Scholar
  29. 29.
    F. Mu, W. Zhong, X. Zhao, C. Che, Y. Chen and J. Zhu, Nat. Gas Ind. B, 2(4), 383 (2015).CrossRefGoogle Scholar
  30. 30.
    DOE U, Powder River Basin Coalbed Methane Development and Produced Water Management Study. US Department of Energy (2002).Google Scholar
  31. 31.
    Guide APU, Aspen Technology. Inc. (2009).Google Scholar
  32. 32.
    S. Kim, D. Ko, S. Row and J. Kim, Chem. Eng. Res. Design, 115(A), 230 (2016).CrossRefGoogle Scholar
  33. 33.
    P. Mores, N. Rodríguez, N. Scenna and S. Mussati, Int. J. Greenhouse Gas Control, 10, 148 (2012).CrossRefGoogle Scholar
  34. 34.
    H. Hwang, J. Han and I. Lee, Ind. Eng. Chem. Res., 52(51), 18334 (2013).CrossRefGoogle Scholar
  35. 35.
    J. Kim, J. Miller, C. Maravelias and E. Stechel, Appl. Energy, 111, 1089 (2013).CrossRefGoogle Scholar
  36. 36.
    J. De Graaff, V. Zuazo, N. Jones and L. Fleskens, J. Environ. Manage., 89(2), 129 (2008).CrossRefGoogle Scholar
  37. 37.
    D. Singh, E. Croiset, P. Douglas and M. Douglas, Energy Convers. Manage., 44(19), 3073 (2003).CrossRefGoogle Scholar
  38. 38.
    S. Wong, D. Macdonald, S. Andrei, W. Gunter, X. Deng and D. Law, Int. J. Coal Geol., 81(3-4), 280 (2010).CrossRefGoogle Scholar
  39. 39.
    R. Weijermars, Appl. Energy, 106, 100 (2013).CrossRefGoogle Scholar
  40. 40.
    US Energy Information Administration. Natural gas monthly 2016. http://www.eia.gov/2016 (2016)Google Scholar
  41. 41.
    N. Haeffelé, The Feasibility and the Economic Viability of Shipping LNG via the Northern Sea Route 2013.Google Scholar
  42. 42.
    R. Egging, F. Holz and S. Gabriel, Energy, 35(10), 4016 (2010).CrossRefGoogle Scholar
  43. 43.
    J. Kim, C. Henao, T. Johnson, D. Dedrick, J. Miller and E. Stechel and C. Maravelias, Energy Environ. Sci., 4, 3122 (2011).CrossRefGoogle Scholar
  44. 44.
    S. Fleten and E. Näsäkkälä, Energy Econ., 32(4), 805 (2010).CrossRefGoogle Scholar
  45. 45.
    H. Naims, Environ. Sci. Pollut. Res., 23(22), 22226 (2016).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  • Sunghoon Kim
    • 1
  • Daeho Ko
    • 2
  • Junyoung Mun
    • 1
  • Tae-hyun Kim
    • 3
  • Jiyong Kim
    • 1
  1. 1.Department of Energy & Chemical EngineeringIncheon National UniversityIncheonKorea
  2. 2.Global Engineering DivisionGS Engineering & ConstructionSeoulKorea
  3. 3.Organic Material Synthesis Laboratory, Department of ChemistryIncheon National UniversityIncheonKorea

Personalised recommendations