Skip to main content
Log in

Thermo-physical properties, excess and deviation properties for a mixture of γ-butyrolactone with diethyl carbonate or propylene carbonate

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The paper reports the thermodynamic and transport properties of the materials that are used in liquid electrolytes of lithium ion batteries (LIBs). Linear and cyclic carbonates are commonly used solvents for organic electrolyte solutions. On the other hand, γ-butyrolactone (GBL) could also be an attractive solvent because it has sufficiently high permittivity to dissociate lithium salts. This prompted us to investigate the thermo-physical properties such as the density, refractive index, kinematic viscosity (298.2 to 328.2 K) and the excess and deviation properties (298.2 to 318.2 K) for a mixture of GBL and diethyl carbonate (DEC) or propylene carbonate (PC). The thermo-physical properties, i.e., the density, refractive index, and kinematic viscosity, were correlated by employing DIPPR, and linear and Goletz/Tassion equations, respectively. The excess and deviation properties were computed and modeled by the polynomial Redlich-Kister equations for each of the binary fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dang, F. Xiang, N. Gu, R. Zhang, R. Mukherjee, I. Oh, N. Koratkar and Z. Yang, J. Power Sources, 243, 33 (2013).

    Article  CAS  Google Scholar 

  2. L. Shen, H. Li, E. Uchaker, X. Zhang and G. Cao, Nano Lett., 12, 5673 (2012).

    Article  CAS  Google Scholar 

  3. L. Xing, W. Le, C. Wang, F. Gu, M. Xu, C. Tan and J. Yi, J. Phys. Chem., 113, 16596 (2009).

    Article  CAS  Google Scholar 

  4. H. Nithya, S. Selvasekarapandian, P. C. Selvin, D. A. Kumar and M. Hema, Ionics, 17, 587 (2011).

    Article  CAS  Google Scholar 

  5. S. J. Pai and Y.C. Bae, Fluid Phase Equilib., 332, 94 (2012).

    Article  CAS  Google Scholar 

  6. N. Hafaiedh, A. Toumi and M. Bouanz, Phys. Chem. Liq., 47, 399 (2009).

    Article  CAS  Google Scholar 

  7. F. Chen, Z. Yang, Z. Chen, J. Hu, C. Chen and J. Cai, J. Mol. Liq., 209, 683 (2015).

    Article  CAS  Google Scholar 

  8. G. Ritzoulis, D. Missopolinou, S. Doulami and C. Panayiotou, J. Chem. Eng. Data, 45, 636 (2000).

    Article  CAS  Google Scholar 

  9. H. Lu, J. Wang, Y. Zhao, X. Xuan and K. Zhuo, J. Chem. Eng. Data, 46, 631 (2001).

    Article  CAS  Google Scholar 

  10. J. Huang, X. Liu, X. Kang, Z. Yu, T. Xu and W. Qiu, J. Power Sources, 189, 458 (2009).

    Article  CAS  Google Scholar 

  11. L. Lorenzi, M. Fermeglia and G. Torriano, J. Chem. Eng. Data, 43, 183 (1998).

    Article  Google Scholar 

  12. T. Daubert and R. Danner, Physical and Thermodynamic Properties of Pure Chemicals, Hemisphere Publishing Corp., New York (1989).

    Google Scholar 

  13. E. Goletz and D. Tassions, Ind. Eng. Chem. Process Des. Dev., 16, 75 (1977).

    Article  CAS  Google Scholar 

  14. O. Redlich and A. Kister, Ind. Eng. Chem., 40, 345 (1948).

    Article  Google Scholar 

  15. M. Vranes, S. Papovic, A. Tot and N. Zec, J. Chem. Thermodynamics, 76, 161 (2014).

    Article  CAS  Google Scholar 

  16. A. Farhan and A. Awwad, J. Chem. Eng. Data, 55, 1035 (2010).

    Article  CAS  Google Scholar 

  17. C. Yang, W. Xu and P. Ma, J. Chem. Eng. Data, 49, 1802 (2004).

    Article  CAS  Google Scholar 

  18. S.H. Shin, I. Y. Jeong, Y. S. Jeong and S. J. Park, Fluid Phase Equilib., 376, 105 (2014).

    Article  CAS  Google Scholar 

  19. C. Yang, H. Lai, Z. Liu and P. Ma, J. Chem. Eng. Data, 51, 1345 (2006).

    Article  CAS  Google Scholar 

  20. A. Rodriguez, J. Canosa and J. Tojo, J. Chem. Thermodynamics, 35, 1321 (2003).

    Article  CAS  Google Scholar 

  21. A. Naejus, D. Lemordant and R. Coudert, J. Chem. Thermodynamics, 29, 1503 (1997).

    Article  CAS  Google Scholar 

  22. P. Sears, T. Stoeckinger and L. Dawson, J. Chem. Eng. Data, 16, 220 (1971).

    Article  CAS  Google Scholar 

  23. M. Vranes, N. Zec, A. Tot, S. Papovic, S. Dozic and S. Gadzuric, J. Chem. Thermodynamics, 68, 98 (2014).

    Article  CAS  Google Scholar 

  24. G. Moumouzias and G. Ritzoulis, J. Chem. Eng. Data, 45, 202 (2000).

    Article  CAS  Google Scholar 

  25. I.Y. Jeong, R. H. Kwon, S. J. Park and Y.Y. Choi, J. Chem. Eng. Data, 59, 289 (2014).

    Article  CAS  Google Scholar 

  26. K. H. Lee, S. J. Park and Y.Y. Choi, Korean J. Chem. Eng., 34, 214 (2017).

    Article  CAS  Google Scholar 

  27. S. Ottani, D. Vitalini, F. Comelli and C. Castellari, J. Chem. Eng. Data, 47, 1197 (2002).

    Article  CAS  Google Scholar 

  28. J. Resa, C. Gonzalez and J. Goenaga, J. Chem. Eng. Data, 51, 73 (2006).

    Article  CAS  Google Scholar 

  29. J. H. Oh and S. J. Park, J. Chem. Eng. Data, 43, 1009 (1998).

    Article  CAS  Google Scholar 

  30. K. J. Han, J. H. Oh, S. J. Park and J. Gmehling, J. Chem. Eng. Data, 50, 1951 (2005).

    Article  CAS  Google Scholar 

  31. T. Aminabhavi and B. Gopalakrishna, J. Chem. Eng. Data, 40, 856 (1995).

    Article  CAS  Google Scholar 

  32. A. Al-Dujaili, A. Yassen and A. Awwad, J. Chem. Eng. Data, 45, 647 (2000).

    Article  CAS  Google Scholar 

  33. D. Sen and M. G. Kim, Korean J. Chem. Eng., 26, 806 (2009).

    Article  CAS  Google Scholar 

  34. A. Akaike, IEEE T. Automat. Contr., 19, 716 (1974).

    Article  Google Scholar 

  35. L. Kirkup, Data analysis with Excel, Cambridge University Press: Cambridge (2002).

    Google Scholar 

  36. D. Lide, CRC Handbook of Chemistry and Physics, 85th Ed., CRC Press (2004).

    Google Scholar 

  37. W. Kauzmann and H. Eyring, J. Am. Chem. Soc., 62, 3113 (1940).

    Article  CAS  Google Scholar 

  38. P. Brocos, A. Pineiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003).

    Article  CAS  Google Scholar 

  39. A. Nain, J. Chem. Eng. Data, 53, 850 (2008).

    Article  CAS  Google Scholar 

  40. R. Maximino, Phys. Chem. Liq., 47, 515 (2009).

    Article  CAS  Google Scholar 

  41. M. Nakata and M. Sakurai, J. Chem. Soc. Faraday Trans., 83, 2449 (1987).

    Article  CAS  Google Scholar 

  42. H. Lorentz, Ann. Phys.-Berlin, 245, 641 (1880).

    Article  Google Scholar 

  43. T. Dale and J. Gladstone, Phil. Trans. R. Soc. Lond., 148, 887 (1858).

    Article  Google Scholar 

  44. O. Wiener, Zur theorie der Refraktionskonstanten, Berichte über die Verhandlungen der Königlich-Sächsischen Gesellsschaft der Wissenschaften zu Leipzig (1910).

    Google Scholar 

  45. W. Heller, J. Phys. Chem., 69, 1123 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KH., Park, SJ. Thermo-physical properties, excess and deviation properties for a mixture of γ-butyrolactone with diethyl carbonate or propylene carbonate. Korean J. Chem. Eng. 35, 222–233 (2018). https://doi.org/10.1007/s11814-017-0256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0256-1

Keywords

Navigation