Manganese oxide with different composition and morphology as electrocatalyst for oxygen evolution reaction

Abstract

Electrochemical activity and stability depend on the composition and morphology of nanocrystals. Mn3O4 nanoplates, Mn2O3 nanoplates, and porous Mn2O3 nanoplates were synthesized by heat treatment of Mn-glycolate nanoplates prepared by the wet-chemical method. In this research, the morphology and composition of the nanoplates could be easily controlled by varying the annealing temperature. The synthesized porous Mn2O3 nanoplates exhibited better electrocatalytic activities compared with Mn3O4 and Mn2O3 nanoplates, as similar as commercial IrO2 catalyst.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. A. Turner, Science, 305, 972 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    N. Armaroli and V. Balzani, ChemSusChem, 4, 21 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    A. L. Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin and M. Fontecave, Science, 326, 1384 (2009).

    Article  Google Scholar 

  4. 4.

    H. Dau and I. Zaharieva, Acc. Chem. Res., 42, 1861 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    L. Duan, L. Tong, Y. Xu and L. Sun, Energy Environ. Sci., 4, 3296 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    R. Cao, W. Lai and P. Du, Energy Environ. Sci., 5, 8134 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2, 1765 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 133, 7296 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    H. G. S. Casalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara and A. Nilsson, Angew. Chem. Int. Ed., 53, 7169 (2014).

    Article  Google Scholar 

  10. 10.

    T. Nakagawa, N. S. Bjorge and R.W. Murray, J. Am. Chem. Soc., 131, 15578 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    T. Nakagawa, C. A. Beasley and R.W. Murray, J. Phys. Chem. C, 113, 12958 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 3, 399 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    J. Suntivich, K. J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, Science, 334, 1383 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    M.W. Louie and A.T. Bell, J. Am. Chem. Soc., 135, 12329 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K. J. Siu, S. Trudel and C.P. Berlinguette, Science, 340, 60 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith and S.W. Boettcher, J. Am. Chem. Soc., 137, 3638 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    F. Cheng, J. Shen, W. Ji, Z. Tao and J. Chen, ACS Appl. Mater. Interfaces, 1, 460 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    W. Xiao, D. Wang and X.W. Lou, J. Phys. Chem. C, 114, 1694 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Gorlin, C.-J. Chung, D. Nordlund, B. M. Clemens and T. F. Jaramillo, ACS Catal., 2, 2687 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    F. Jiao and H. Frei, Chem. Commun., 46, 2920 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    S. Chen, T. Zhai, X.-H. Lu, M.-Z. Zhang, Z.-Y. Li, C.-W. Xu and Y. Tong, Int. J. Hydrogen Energy, 37, 13350 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Xu, H. Jiang, X. Li, H. Xiao, W. Xiao and T. Wu, J. Mater. Chem. A, 2, 13345 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    H.-Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Nørskov, T. F. Jaramillo and J. Rossmeisl, Phys. Chem. Chem. Phys., 14, 14010 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    H. Duan, N. Yan, R. Yu, C.-R. Chang, G. Zhou, H.-S. Hu, H. Rong, Z. Niu, J. Mao, H. Asakura, T. Tanaka, P. J. Dyson, J. Li and Y. Li, Nat. Commun., 5, 3093 (2014).

    Google Scholar 

  25. 25.

    C. Koenigsmann, D.B. Semple, E. Sutter, S. E. Tobierre and S. S. Wong, ACS Appl. Mater. Interfaces, 5, 5518 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Yan, B. Xia, X. Ge, Z. Liu, J.-Y. Wang and X. Wang, ACS Appl. Mater. Interfaces, 5, 12794 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu and J. Ye, ACS Nano, 10, 684 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    L. Liu, Z. Yang, H. Liang, H. Yang and Y. Yang, Mater. Lett., 61, 891 (2010).

    Article  Google Scholar 

  29. 29.

    Y. Sun, X. Hu, W. Luo and Y. Huang, J. Mater. Chem., 22, 19190 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Y. Zhang, Y. Yan, X. Wang, G. Li, D. Deng, L. Jiang, C. Shu and C. Wang, Chem. Eur. J., 20, 6126 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    S.-Z. Huang, Y. Cai, J. Jin, J. Liu, Y. Li, Y. Yu, H.-E. Wang, L.-H. Chen and B.-L. Su, Nano Energy, 12, 833 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang and Y.-F. Han, Catal. Today, 131, 477 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    B. Liu, X. Hu, H. Xu, W. Luo, Y. Sun and Y. Huang, Sci. Rep., 4, 4229 (2014).

    Article  Google Scholar 

  34. 34.

    N.D. Petkovich and A. Stein, Chem. Soc. Rev., 42, 3721 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez and B.-L. Su, Chem. Soc. Rev., 46, 481 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Y. Fang, Y. Huang, S. Zhang, W. Jia, X. Wang, Y. Guo, D. Jia and L. Wang, Chem. Eng. J., 315, 583 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff and S. Fiechter, J. Phys. Chem. C, 118, 14073 (2014).

    Article  Google Scholar 

  38. 38.

    D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, V. J. Fulari and C.D. Lokhande, J. Alloys Compd., 497, 166 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    G. Liu, X. Gao, K. Wang, D. He and J. Li, Nano Res., 10, 2096 (2017).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Taekyung Yu or Byungkwon Lim.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sim, H., Lee, J., Yu, T. et al. Manganese oxide with different composition and morphology as electrocatalyst for oxygen evolution reaction. Korean J. Chem. Eng. 35, 257–262 (2018). https://doi.org/10.1007/s11814-017-0247-2

Download citation

Keywords

  • Manganese Oxides
  • Composition
  • Porous Structure
  • Oxygen Evolution Reaction
  • Stability