Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Manganese oxide with different composition and morphology as electrocatalyst for oxygen evolution reaction

  • 310 Accesses

  • 11 Citations

Abstract

Electrochemical activity and stability depend on the composition and morphology of nanocrystals. Mn3O4 nanoplates, Mn2O3 nanoplates, and porous Mn2O3 nanoplates were synthesized by heat treatment of Mn-glycolate nanoplates prepared by the wet-chemical method. In this research, the morphology and composition of the nanoplates could be easily controlled by varying the annealing temperature. The synthesized porous Mn2O3 nanoplates exhibited better electrocatalytic activities compared with Mn3O4 and Mn2O3 nanoplates, as similar as commercial IrO2 catalyst.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. A. Turner, Science, 305, 972 (2004).

  2. 2.

    N. Armaroli and V. Balzani, ChemSusChem, 4, 21 (2011).

  3. 3.

    A. L. Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin and M. Fontecave, Science, 326, 1384 (2009).

  4. 4.

    H. Dau and I. Zaharieva, Acc. Chem. Res., 42, 1861 (2009).

  5. 5.

    L. Duan, L. Tong, Y. Xu and L. Sun, Energy Environ. Sci., 4, 3296 (2011).

  6. 6.

    R. Cao, W. Lai and P. Du, Energy Environ. Sci., 5, 8134 (2012).

  7. 7.

    T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2, 1765 (2012).

  8. 8.

    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 133, 7296 (2011).

  9. 9.

    H. G. S. Casalongue, M. L. Ng, S. Kaya, D. Friebel, H. Ogasawara and A. Nilsson, Angew. Chem. Int. Ed., 53, 7169 (2014).

  10. 10.

    T. Nakagawa, N. S. Bjorge and R.W. Murray, J. Am. Chem. Soc., 131, 15578 (2009).

  11. 11.

    T. Nakagawa, C. A. Beasley and R.W. Murray, J. Phys. Chem. C, 113, 12958 (2009).

  12. 12.

    Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, J. Phys. Chem. Lett., 3, 399 (2012).

  13. 13.

    J. Suntivich, K. J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, Science, 334, 1383 (2011).

  14. 14.

    M.W. Louie and A.T. Bell, J. Am. Chem. Soc., 135, 12329 (2013).

  15. 15.

    R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K. J. Siu, S. Trudel and C.P. Berlinguette, Science, 340, 60 (2013).

  16. 16.

    M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith and S.W. Boettcher, J. Am. Chem. Soc., 137, 3638 (2015).

  17. 17.

    F. Cheng, J. Shen, W. Ji, Z. Tao and J. Chen, ACS Appl. Mater. Interfaces, 1, 460 (2009).

  18. 18.

    W. Xiao, D. Wang and X.W. Lou, J. Phys. Chem. C, 114, 1694 (2010).

  19. 19.

    Y. Gorlin, C.-J. Chung, D. Nordlund, B. M. Clemens and T. F. Jaramillo, ACS Catal., 2, 2687 (2012).

  20. 20.

    F. Jiao and H. Frei, Chem. Commun., 46, 2920 (2010).

  21. 21.

    S. Chen, T. Zhai, X.-H. Lu, M.-Z. Zhang, Z.-Y. Li, C.-W. Xu and Y. Tong, Int. J. Hydrogen Energy, 37, 13350 (2012).

  22. 22.

    Y. Xu, H. Jiang, X. Li, H. Xiao, W. Xiao and T. Wu, J. Mater. Chem. A, 2, 13345 (2014).

  23. 23.

    H.-Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Nørskov, T. F. Jaramillo and J. Rossmeisl, Phys. Chem. Chem. Phys., 14, 14010 (2012).

  24. 24.

    H. Duan, N. Yan, R. Yu, C.-R. Chang, G. Zhou, H.-S. Hu, H. Rong, Z. Niu, J. Mao, H. Asakura, T. Tanaka, P. J. Dyson, J. Li and Y. Li, Nat. Commun., 5, 3093 (2014).

  25. 25.

    C. Koenigsmann, D.B. Semple, E. Sutter, S. E. Tobierre and S. S. Wong, ACS Appl. Mater. Interfaces, 5, 5518 (2013).

  26. 26.

    Y. Yan, B. Xia, X. Ge, Z. Liu, J.-Y. Wang and X. Wang, ACS Appl. Mater. Interfaces, 5, 12794 (2013).

  27. 27.

    H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X. Meng, K. Wu and J. Ye, ACS Nano, 10, 684 (2016).

  28. 28.

    L. Liu, Z. Yang, H. Liang, H. Yang and Y. Yang, Mater. Lett., 61, 891 (2010).

  29. 29.

    Y. Sun, X. Hu, W. Luo and Y. Huang, J. Mater. Chem., 22, 19190 (2012).

  30. 30.

    Y. Zhang, Y. Yan, X. Wang, G. Li, D. Deng, L. Jiang, C. Shu and C. Wang, Chem. Eur. J., 20, 6126 (2014).

  31. 31.

    S.-Z. Huang, Y. Cai, J. Jin, J. Liu, Y. Li, Y. Yu, H.-E. Wang, L.-H. Chen and B.-L. Su, Nano Energy, 12, 833 (2015).

  32. 32.

    K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang and Y.-F. Han, Catal. Today, 131, 477 (2008).

  33. 33.

    B. Liu, X. Hu, H. Xu, W. Luo, Y. Sun and Y. Huang, Sci. Rep., 4, 4229 (2014).

  34. 34.

    N.D. Petkovich and A. Stein, Chem. Soc. Rev., 42, 3721 (2013).

  35. 35.

    X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez and B.-L. Su, Chem. Soc. Rev., 46, 481 (2017).

  36. 36.

    Y. Fang, Y. Huang, S. Zhang, W. Jia, X. Wang, Y. Guo, D. Jia and L. Wang, Chem. Eng. J., 315, 583 (2017).

  37. 37.

    A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff and S. Fiechter, J. Phys. Chem. C, 118, 14073 (2014).

  38. 38.

    D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, V. J. Fulari and C.D. Lokhande, J. Alloys Compd., 497, 166 (2010).

  39. 39.

    G. Liu, X. Gao, K. Wang, D. He and J. Li, Nano Res., 10, 2096 (2017).

Download references

Author information

Correspondence to Taekyung Yu or Byungkwon Lim.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sim, H., Lee, J., Yu, T. et al. Manganese oxide with different composition and morphology as electrocatalyst for oxygen evolution reaction. Korean J. Chem. Eng. 35, 257–262 (2018). https://doi.org/10.1007/s11814-017-0247-2

Download citation

Keywords

  • Manganese Oxides
  • Composition
  • Porous Structure
  • Oxygen Evolution Reaction
  • Stability