Skip to main content
Log in

Evaluation of relationship between biogas production and microbial communities in anaerobic co-digestion

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Anaerobic co-digestion (ACD) has been used to treat various organic wastes because nutrient balance in the feed can be improved by mixing different organics. Until now, the correlation between characteristics of feedstocks and biogas production by ACD has been studied mainly in terms of biochemical methane potential. It has been rarely tried to understand the co-digestion process in terms of microbial community development. This study aimed to evaluate the performance of batch anaerobic digestion (AD) reactors fed with activated sludge (AS), swine slurry (SS) and food waste (FW) individually or in a mixture of the three wastes (FW: SS : AS=1 : 3 : 2). The AD reactors fed with the mixture showed better performance than those fed with a single substrate. Microbial communities of the batch AD reactors fed with a single substrate or the mixture were analyzed and the result was related to the performance of the AD reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Lim, I. Chung and B. Kim, Environ. Eng. Res., 17, 41 (2012).

    Article  Google Scholar 

  2. T. Zuliani, A. Mladenovic, J. Šcancar and R. Milacic, Environ. Monit. Assess., 188, 234 (2016).

    Article  Google Scholar 

  3. M. Kim, J. Cha, J. Yu and C. Kim, Bioprocess. Biosyst. Eng., 39, 1191 (2016).

    Article  CAS  Google Scholar 

  4. H. N. Gavala, U. Yenal, I.V. Skiadas, P. Westermann and B.K. Ahring, Water Res., 37, 4561 (2003).

    Article  CAS  Google Scholar 

  5. V. Cabbai, M. Ballico, E. Aneggi and D. Goi, Waste Manage., 33, 1626 (2013).

    Article  CAS  Google Scholar 

  6. J. De Vrieze and W. Verstraete, Environ. Microbiol., 18, 2797 (2016).

    Article  CAS  Google Scholar 

  7. F. J. Callaghan, D.A. J. Wase, K. Thayanithy and C.F. Forster, Biomass Bioenergy, 22, 71 (2002).

    Article  CAS  Google Scholar 

  8. H. Hartmann and B.K. Ahring, Water Res., 39, 1543 (2005).

    Article  CAS  Google Scholar 

  9. R. Zhang, H.M. El-Mashad, K. Hartman, F. Wang, G. Liu, C. Choate and P. Gamble, Bioresour. Technol., 98, 929 (2007).

    Article  CAS  Google Scholar 

  10. J. Gelegenis, D. Georgakakis, I. Angelidaki, N. Christopoulou and M. Goumenaki, Appl. Energy, 84, 646 (2007).

    Article  CAS  Google Scholar 

  11. R.K. Dereli, M. E. Ersahin, C.Y. Gomec, I. Ozturk and O. Ozdemir, Waste Manage. Res., 28, 404 (2010).

    Article  CAS  Google Scholar 

  12. M. Murto, L. Björnsson and B. Mattiasson, J. Environ. Manage., 70, 101 (2004).

    Article  CAS  Google Scholar 

  13. L. Appels, J. Baeyens, J. Degrève and R. Dewil, Prog. Energy Combust. Sci., 34, 755 (2008).

    Article  CAS  Google Scholar 

  14. F. Wang, W.Y. Li and X. N. Yi, Water Sci. Technol., 71, 52 (2015).

    Article  CAS  Google Scholar 

  15. Y. Ye, C. Zamalloa, H. Lin, M. Yan, D. Schmidt and B. Hu, J. Environ. Sci. Health., Part B, 50, 217 (2015).

    Article  CAS  Google Scholar 

  16. I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek and J. B. van Lier, Water Sci. Technol., 59, 927 (2009).

    Article  CAS  Google Scholar 

  17. K. Koch, Y.B. Fernández and J. E. Drewes, Bioresour. Technol., 186, 173 (2015).

    Article  CAS  Google Scholar 

  18. APHA, Standard Methods for Examinations of Water and Wastewater, Am. J. Public Health, Washington, D.C. (2005).

  19. T.C. Drage, A. Arenillas, K. M. Smith, C. Pevida, S. Piippo and C. E. Snape, Fuel, 86, 22 (2007).

    Article  CAS  Google Scholar 

  20. W.C. Boyle, Energy recovery from sanitary landfills—a review, Microb. Energ. Convers. Pergamon Press, Oxford, UK, 119 (1976).

    Google Scholar 

  21. F. Raposo, V. Fernández-Cegrí, M. A. De la Rubia, R. Borja, F. Béline, C. Cavinato, G. Demirer, B. Fernández, M. Fernández-Polanco, J. C. Frigon, R. Ganesh, P. Kaparaju, J. Koubova, R. Méndez, G. Menin, A. Peene, P. Scherer, M. Torrijos, H. Uellendahl, I. Wierinck and V. de Wilde, J. Chem. Technol. Biotechnol., 86, 1088 (2011).

    Article  CAS  Google Scholar 

  22. M. Leclerc, C. Delbes, R. Moletta and J. J. Godon, FEMS Microbiol. Ecol., 34, 213 (2001).

    Article  CAS  Google Scholar 

  23. M. Zhou, T. A. McAllister and L. L. Guan, Anim. Feed Sci. Technol., 166, 76 (2011).

    Article  Google Scholar 

  24. D.W. Fadrosh, B. Ma, P. Gajer, N. Sengamalay, S. Ott, R. M. Brotman and J. Ravel, Microbiome, 2, 6 (2014).

    Article  Google Scholar 

  25. A.M. Ziganshin, J. Liebetrau, J. Pröter and S. Kleinsteuber, Appl. Microbiol. Biotechnol., 97, 5161 (2013).

    Article  CAS  Google Scholar 

  26. M. Hamady, C. Lozupone and R. Knight, ISME J., 4, 17 (2010).

    Article  CAS  Google Scholar 

  27. J.Y. Seo, J.S. Heo, T.H. Kim, W.H. Joo and D.M. Crohn, Waste Manage., 24, 981 (2004).

    Article  CAS  Google Scholar 

  28. D. H. Lee, S. K. Behera, J.W. Kim and H. S. Park, Waste Manage., 29, 621 (2009).

    Article  CAS  Google Scholar 

  29. O. Yenigün and B. Demirel, Process Biochem., 48, 901 (2013).

    Article  Google Scholar 

  30. D.G. Cirne, A. Lehtomäki, L. Björnsson and L. L. Blackall, J. Appl. Microbiol., 103, 516 (2007).

    Article  CAS  Google Scholar 

  31. A.M. Ziganshin, T. Schmidt, F. Scholwin, O.N. Il’inskaya, H. Harms and S. Kleinsteuber, Appl. Microbiol. Biotechnol., 89, 2039 (2011).

    Article  CAS  Google Scholar 

  32. F. Di Maria, M. Barratta, F. Bianconi, P. Placidi and D. Passeri, Waste Manage., 59, 172 (2017).

    Article  CAS  Google Scholar 

  33. E.M. Bik, P. B. Eckburg, S.R. Gill, K. E. Nelson, E. A. Purdom, F. Francois, G. Perez-Perez, M. J. Blaser and D.A. Relman, Proc. Natl. Acad. Sci. U.S.A., 103, 732 (2006).

    Article  CAS  Google Scholar 

  34. Y. S. Kim and J.A. Milner, J. Nutr., 137, 2576S (2007).

    Google Scholar 

  35. S. Rocheleau, C.W. Greer, J.R. Lawrence, C. Cantin, L. Laramée and S.R. Guiot, Appl. Environ. Microbiol., 65, 2222 (1999).

    CAS  Google Scholar 

  36. K. Venkiteshwaran, B. Bocher, J. Maki and D. Zitomer, Microbiol. Insights, 8, 37 (2015).

    Google Scholar 

  37. L. Ganzert, J. Schirmack, M. Alawi, K. Mangelsdorf, W. Sand, A. Hillebrand-Voiculescu and D. Wagner, Int. J. Syst. Evol. Microbiol., 64, 3478 (2014).

    Article  Google Scholar 

  38. B. F. Staley, L. Francis and M.A. Barlaz, Appl. Environ. Microbiol., 77, 2381 (2011).

    Article  CAS  Google Scholar 

  39. I. Dirnena, I. Dimanta, A. Gruduls, J. Kleperis, D. Elferts and V. Nikolajeva, Biotechnol. Appl. Biochem., 61, 316 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunook Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Kim, M., Kim, H. et al. Evaluation of relationship between biogas production and microbial communities in anaerobic co-digestion. Korean J. Chem. Eng. 35, 179–186 (2018). https://doi.org/10.1007/s11814-017-0246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0246-3

Keywords

Navigation