Advertisement

Korean Journal of Chemical Engineering

, Volume 35, Issue 4, pp 1033–1044 | Cite as

A novel system dynamics model for forecasting naphtha price

  • Byeonggil Lyu
  • Hweeung Kwon
  • Il Moon
Polymer, Industrial Chemistry
  • 90 Downloads

Abstract

Fluctuations in naphtha price are directly related to the profit of petrochemical companies. Thus, forecasting of naphtha price is becoming increasingly important. To respond to this need, a naphtha crack (the price gap between naphtha and crude oil) forecasting model is developed herein. The objective of this study was to design a reasonable forecasting model that is immediately available and can be used to develop various naphtha supply strategies. However, it is very difficult to forecast a price value with a high accuracy. Therefore, the proposed model focuses not on the price value but on the direction of the crack. These considerations are vital to a company’s decision-making process. In addition, a system dynamics model that considers causal relations is proposed. It was developed based on heuristics, statistical analysis, seasonal effects, and relationships between factors that affect naphtha price, and it exhibits an accuracy rate of 84%-95% in forecasting of the naphtha crack three months in advance.

Keywords

Naphtha Crack Causal Loop Seasonal Effect System Dynamics Forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Dooley and H. Lenihan, Resour. Policy, 30, 208 (2005).CrossRefGoogle Scholar
  2. 2.
    J.-H. Ryu, Korean J. Chem. Eng., 30, 27 (2013).CrossRefGoogle Scholar
  3. 3.
    M. Lee and J. Kim, Korean J. Chem. Eng., 34, 1604 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Kim and J. Kim, Int. J. Hydrog. Energy, 42, 3899 (2017).CrossRefGoogle Scholar
  5. 5.
    P.-F. Pai and C.-S. Lin, Omega, 33, 497 (2005).CrossRefGoogle Scholar
  6. 6.
    J.-M. Brault, R. Labib, M. Perrier and P. Stuart, Can. J. Chem. Eng., 89, 901 (2011).CrossRefGoogle Scholar
  7. 7.
    X.-G. Zhou, L.-H. Liu, W.-K. Yuan and J. L. Hudson, Can. J. Chem. Eng., 74, 638 (1996).CrossRefGoogle Scholar
  8. 8.
    S. Mandal and A. K. Jana, Int. J. Hydrog. Energy, 38, 1244 (2013).CrossRefGoogle Scholar
  9. 9.
    L. M. Ochoa-Estopier, M. Jobson and R. Smith, Comput. Chem. Eng., 59, 178 (2013).CrossRefGoogle Scholar
  10. 10.
    B. Szkuta, L. Sanabria and T. Dillon, IEEE Trans. Power Syst., 14, 851 (1999).CrossRefGoogle Scholar
  11. 11.
    R. Gareta, L. M. Romeo and A. Gil, Energy Conv. Manag., 47, 1770 (2006).CrossRefGoogle Scholar
  12. 12.
    R. Jammazi and C. Aloui, Energy Econ., 34, 828 (2012).CrossRefGoogle Scholar
  13. 13.
    A. J. Conejo, M. A. Plazas, R. Espinola and A. B. Molina, IEEE Trans. Power Syst., 20, 1035 (2005).CrossRefGoogle Scholar
  14. 14.
    P. Visetsripong, P. Sooraksa, P. Luenam and W. Chaimongkol, SICE Annual Conference, 659–663 (2008).Google Scholar
  15. 15.
    X. Yan and N. A. Chowdhury, Int. J. Electr. Power Energy Syst., 53, 20 (2013).CrossRefGoogle Scholar
  16. 16.
    J. Myklebust, A. Tomasgard and S. Westgaard, OPEC Energy Review, 34, 82 (2010).CrossRefGoogle Scholar
  17. 17.
    N. Salehnia, M. A. Falahi, A. Seifi and M. H. M. Adeli, J. Nat. Gas Sci. Eng., 14, 238 (2013).CrossRefGoogle Scholar
  18. 18.
    K. Tak, J. Kim, H. Kwon, J. H. Cho and I. Moon, Korean J. Chem. Eng., 33, 1999 (2016).CrossRefGoogle Scholar
  19. 19.
    D. Manca, Comput. Chem. Eng., 57, 3 (2013).CrossRefGoogle Scholar
  20. 20.
    R. Rasello and D. Manca, Comput. Aided Chem. Eng., 433 (2014).Google Scholar
  21. 21.
    K. J. Lee, T. H. Lee, L.-H. Kim and Y. K. Yeo, Korean J. Chem. Eng., 28, 1505 (2011).CrossRefGoogle Scholar
  22. 22.
    T. H. Lee, K. J. Lee, B.W. Jo, L. H. Kim and Y. K. Yeo, Korean J. Chem. Eng., 28, 1331 (2011).CrossRefGoogle Scholar
  23. 23.
    C. Sung, H. Kwon, J. Lee, H. Yoon and I. Moon, Comput. Aided Chem. Eng., 145 (2012).Google Scholar
  24. 24.
    B. Lyu, H. Kwon, J. Lee, H. Yoon, J. Jin and I. Moon, Comput. Aided Chem. Eng., 829 (2014).Google Scholar
  25. 25.
    H. Kwon, B. Lyu, K. Tak, J. Lee, J. H. Cho and I. Moon, Comput. Chem. Eng., 84, 226 (2016).CrossRefGoogle Scholar
  26. 26.
    H. Kwon, K. Tak, J. H. Cho, J. Kim and I. Moon, Ind. Eng. Chem. Res., 56, 1267 (2017).CrossRefGoogle Scholar
  27. 27.
    X. Tang, B. Zhang, M. Höök and L. Feng, Energy, 35, 3097 (2010).CrossRefGoogle Scholar
  28. 28.
    A. Aslani, P. Helo and M. Naaranoja, Appl. Energy, 113, 758 (2014).CrossRefGoogle Scholar
  29. 29.
    M. A. Rendon-Sagardi, C. Sanchez-Ramirez, G. Cortes-Robles, G. Alor-Hernandez and M. G. Cedillo-Campos, Appl. Energy, 123, 358 (2014).CrossRefGoogle Scholar
  30. 30.
    H. Qudrat-Ullah, Energy, 59, 285 (2013).CrossRefGoogle Scholar
  31. 31.
    R. Rehan, M. A. Knight, A. J. A. Unger and C. T. Haas, Tunn Undergr Sp Tech, 39, 116 (2014).CrossRefGoogle Scholar
  32. 32.
    O. Erdem, E. Ceyhan and Y. Varli, Physica A: Statistical Mechanics and its Applications, 414, 274 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulKorea

Personalised recommendations