Spherical graphene and Si nanoparticle composite particles for high-performance lithium batteries

Abstract

Silicon/carbon composite electrodes are in the spotlight as an anode with a high capacity and a long cycle life. For this purpose, it is important to make a uniformly dispersed composite material. We fabricated spherical composite particles of reduced graphene oxide (rGO) and silicon nanoparticle (Si NP) using a spray drying method. The composite microparticle fabricated by drying the suspended droplets forms a well-agglomerated rGO/Si NP composite and forms a pore structure by crumpled rGO. The rGO/Si NP microparticles were applied as the anode of the lithium-ion battery. We achieved a reversible capacity of 1,246 mAh/g at 1A/g after 200 charge/discharge cycles and a capacity retention of 83%. Considering that the Si NP microparticle without rGO showed a capacity of 365 mAh/g and a retention of 12%, the rGO matrix improves the electrical conductivity and effectively alleviates stress during charge and discharge cycles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Tarascon, Nature, 407, 496 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    M. M. Thackeray, C. Wolverton and E.D. Isaacs, Energy Environ. Sci., 5, 7854 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho and P.G. Bruce, Angew. Chem. Int. Ed., 51, 9994 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    M. Ko, S. Chae, S. Jeong, P. Oh and J. Cho, ACS Nano, 8, 8591 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    A. Manthiram, A. Vadivel Murugan, A. Sarkar and T. Muraliganth, Energy Environ. Sci., 1, 621 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    P.G. Bruce, B. Scrosati and J.-M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    S. Choi, D. S. Jung and J.W. Choi, Nano Lett., 14, 7120 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    C.K. Chan, R.N. Patel, M. J. O’Connell, B.A. Korgel and Y. Cui, ACS Nano, 4, 1443 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    L. Hu, H. Wu, S. S. Hong, L. Cui, J.R. McDonough, S. Bohy and Y. Cui, Chem. Commun., 47, 367 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    M.-H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K.-C. Hwang, J. A. Rogers and U. Paik, Nano Lett., 10, 1710 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    T. Zhao, S. She, X. Ji, W. Jin, A. Dang, H. Li, T. Li, S. Shang and Z. Zhou, J. Alloys Compd., 708, 500 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    W.-h. Lee, D.-Y. Kang, J. S. Kim, J. K. Lee and J. H. Moon, RSC Adv., 5, 17424 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    D. Gueon, J. Lee, J. K. Lee and J. H. Moon, RSC Adv., 6, 38012 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    M. Liang and L. Zhi, J. Mater. Chem., 19, 5871 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    T. Zhao, X. Ji, P. Bi, W. Jin, C. Xiong, A. Dang, H. Li, T. Li, S. Shang and Z. Zhou, Electrochim. Acta, 230, 342 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    H. Bai, C. Li and G. Shi, Adv. Mater., 23, 1089 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    K.T. Nguyen and Y. Zhao, Nanoscale, 6, 6245 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    J. L. Xie, C.X. Guo and C.M. Li, Energy Environ. Sci., 7, 2559 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng and D. Zhao, J. Am. Chem. Soc., 135, 1524 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Zhu, W. Liu, X. Zhang, J. He, J. Chen, Y. Wang and T. Cao, Langmuir, 29, 744 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    X. Zhou, Y.-X. Yin, L.-J. Wan and Y.-G. Guo, Adv. Energy Mater., 2, 1086 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    X. Liu, J. Zhang, W. Si, L. Xi, B. Eichler, C. Yan and O.G. Schmidt, ACS Nano, 9, 1198 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    X. Gao, J. Li, Y. Xie, D. Guan and C. Yuan, ACS Appl. Mater. Interfaces, 7, 7855 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Chen, F. Guo, Y. Qiu, H. Hu, I. Kulaots, E. Walsh and R.H. Hurt, ACS Nano, 7, 3744 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    J. Ma, J. Wang, Y.-S. He, X.-Z. Liao, J. Chen, J.-Z. Wang, T. Yuan and Z.-F. Ma, J. Mater. Chem. A, 2, 9200 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    J. Ma, T. Yuan, Y.-S. He, J. Wang, W. Zhang, D. Yang, X.-Z. Liao and Z.-F. Ma, J. Mater. Chem. A, 2, 16925 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu and J. Xie, ACS Appl. Mater. Interfaces, 6, 5996 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    J. Luo, X. Zhao, J. Wu, H.D. Jang, H. H. Kung and J. Huang, J. Phys. Chem. Lett., 3, 1824 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    J. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, M. G. Kanatzidis, J. M. Gibson and J. Huang, ACS Nano, 5, 8943 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    D. Shao, D. Tang, Y. Mai and L. Zhang, J. Mater. Chem. A, 1, 15068 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, ACS Nano, 4, 1963 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    R.M. S. dos Reis, R. L. Maltez, E. C. Moreira, Y. P. Dias and H. Boudinov, Appl. Surf. Sci., 258, 7395 (2012).

    Article  Google Scholar 

  35. 35.

    H. Yang, Yan, Y. Liu, F. Zhang, R. Zhang, Y. YanMeng, M. Li, S. Xie, B. Tu and D. Zhao, J. Phys. Chem. B, 108, 17320 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    H. Tang, J. Zhang, Y. J. Zhang, Q.Q. Xiong, Y.Y. Tong, Y. Li, X. L. Wang, C.D. Gu and J. P. Tu, J. Power Sources, 286, 431 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    H. Mi, Y. Li, P. Zhu, X. Chai, L. Sun, H. Zhuo, Q. Zhang, C. He and J. Liu, J. Mater. Chem. A, 2, 11254 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim and M. Endo, Adv. Funct. Mater., 16, 2393 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli and Z. Yang, Adv. Energy Mater., 1, 1036 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    M. Wang, D. Jia, J. Li and J. Huang, RSC Adv., 4, 33981 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Q. Xiao, Y. Fan, X. Wang, R. A. Susantyoko and Q. Zhang, Energy Environ. Sci., 7, 655 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    R. Zou, Q. Liu, G. He, M. F. Yuen, K. Xu, J. Hu, I. P. Parkin, C.-S. Lee and W. Zhang, Adv. Energy Mater., 7, 1601363 (2017).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Hyuk Moon.

Additional information

This article is dedicated to Prof. Kipung Yoo on the occasion of his retirement from Sogang University.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Moon, J.H. Spherical graphene and Si nanoparticle composite particles for high-performance lithium batteries. Korean J. Chem. Eng. 34, 3195–3199 (2017). https://doi.org/10.1007/s11814-017-0226-7

Download citation

Keywords

  • Silicon Nanoparticles
  • Reduced Graphene Oxides
  • Lithium Ion Batteries