Korean Journal of Chemical Engineering

, Volume 34, Issue 11, pp 2944–2957 | Cite as

Evaluation of the operating parameters for the separation of xylitol from a mixed sugar solution by using a polyethersulfone nanofiltration membrane

  • Khalefa Atya Faneer
  • Rosiah RohaniEmail author
  • Abdul Wahab Mohammad
  • Muneer Mohammed Ba-Abbad
Separation Technology, Thermodynamics


Nanofiltration (NF) membranes may offer a good route for the recovery of xylitol due to the difference in the size of its particles compared to the other sugars. We evaluated the ability of an in-house polyethersulfone (PES) NF membrane to separate xylitol from a simulated broth solution containing xylose and arabinose. Initially, a Box-Behnken design was utilized to optimize the factors that were significantly involved in the recovery of xylitol, such as the concentration of the components, the composition of the solution, and the pressure. The results obtained from the analysis of the experimental response revealed that the fabricated PES membrane was able to retain 92% of the xylitol and remove 50% of the arabinose, with the purity of the xylitol being enhanced accordingly. The results of fouling showed a good membrane performance for long-term filtration. The concentration polarization was dominated by the membrane pores and the charge. It could be concluded that nanofiltration has a high potential to recover xylitol from its corresponding sugars.


PES Membrane Box-Behnken Xylitol Solution Fouling Concentration Polarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Tamburini, S. Costa, M.G. Marchetti and P. Pedrini, Biomolecules, 5, 1979 (2015).CrossRefGoogle Scholar
  2. 2.
    M. Kresnowati, E. Mardawati and T. Setiadi, Modern Appl. Sci., 9, 206 (2015).CrossRefGoogle Scholar
  3. 3.
    K. Mah, H. Yussof, N. Jalanni, M. A. Seman and N. Zainol, Journal Teknologi, 70 (2014).Google Scholar
  4. 4.
    L.W. Mun, Process Optimization for Xylitol Purification using Liquid-Liquid Batch Extraction: Effect of volume ratios and number of stages Universiti Malaysia Pahang (2015).Google Scholar
  5. 5.
    B. Qi, J. Luo, X. Chen, X. Hang and Y. Wan, Bioresour. Technol., 102, 7111 (2011).CrossRefGoogle Scholar
  6. 6.
    G. Murthy, S. Sridhar, M.S. Sunder, B. Shankaraiah and M. Ramakrishna, Sep. Purif. Technol., 44, 221 (2005).CrossRefGoogle Scholar
  7. 7.
    K. A. Faneer, R. Rohani and A.W. Mohammad, J. Phys. Sci., 28, 73 (2017).CrossRefGoogle Scholar
  8. 8.
    K. A. Faneer, R. Rohani and A.W. Mohammad, Polym. Polym. Composites, 24, 803 (2016).Google Scholar
  9. 9.
    R. P. Affleck, Recovery of xylitol from fermentation of model hemicellulose hydrolysates using membrane technology, Virginia Polytechnic Institute and State University (2000).Google Scholar
  10. 10.
    S. I. Mussatto, J. C. Santos, W. C. Ricardo Filho and S. S. Silva, J. Chem. Technol. Biotechnol., 81, 1840 (2006).CrossRefGoogle Scholar
  11. 11.
    D.C. Montgomery, Design and analysis of experiments, John Wiley & Sons (2008).Google Scholar
  12. 12.
    M.M. Ba-Abbad, P.V. Chai, M. S. Takriff, A. Benamor and A.W. Mohammad, Mater. Design, 86, 948 (2015).CrossRefGoogle Scholar
  13. 13.
    G.C. Fard, M. Mirjalili and F. Najafi, J. Taiwan Inst. Chem. Engineers, 70, 188 (2017).CrossRefGoogle Scholar
  14. 14.
    M. Natrella, NIST/SEMATECH e-Handbook of Statistical Methods (2010).Google Scholar
  15. 15.
    A. Stafiej, K. Pyrzynska, A. Ranz and E. Lankmayr, J. Biochem. Bioph. Methods, 69, 15 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Mohamed, I. Mkhalid and E. Azaam, Mater. Sci. Appl., 2, 981 (2011).Google Scholar
  17. 17.
    J. Antony, Design of experiments for engineers and scientists, Elsevier (2014).Google Scholar
  18. 18.
    M. S. Muhamad, M.R. Salim and W.-J. Lau, Korean J. Chem. Eng., 32, 2319 (2015).CrossRefGoogle Scholar
  19. 19.
    C.C. Koo, K. Wong, W. Chong and H. Thiam, J. Eng. Sci. Technol., 11, 987 (2016).Google Scholar
  20. 20.
    A.K. Pabby, S. S. Rizvi and A. M. S. Requena, Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, CRC Press (2015).CrossRefGoogle Scholar
  21. 21.
    S.M. Kumar, G. Madhu and S. Roy, Sep. Purif. Technol., 57, 25 (2007).CrossRefGoogle Scholar
  22. 22.
    M. Moochani, A. Moghadassi, S. M. Hosseini, E. Bagheripour and F. Parvizian, Korean J. Chem. Eng., 33, 2674 (2016).CrossRefGoogle Scholar
  23. 23.
    C. Feng, B. Shi, G. Li and Y. Wu, J. Membr. Sci., 237, 15 (2004).CrossRefGoogle Scholar
  24. 24.
    R. Rohani, M. Hyland and D. Patterson, J. Membr. Sci., 382, 278 (2011).CrossRefGoogle Scholar
  25. 25.
    N.K. Jafarzadeh, S. Sharifnia, S. N. Hosseini and F. Rahimpour, Korean J. Chem. Eng., 28, 531 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Alaoui, K. E. Kacemi, K. E. Ass and S. Kitane, Transactions of the Indian Institute of Metals, 68, 943 (2015).CrossRefGoogle Scholar
  27. 27.
    G. Chauhan, K. K. Pant and K.D. Nigam, Green Processing and Synthesis, 2, 259 (2013).CrossRefGoogle Scholar
  28. 28.
    J. Mulder, Basic principles of membrane technology, Springer Science & Business Media (2012).Google Scholar
  29. 29.
    A.K. Goulas, P. G. Kapasakalidis, H.R. Sinclair, R.A. Rastall and A. S. Grandison, J. Membr. Sci., 209, 321 (2002).CrossRefGoogle Scholar
  30. 30.
    C. Causserand, S. Rouaix, A. Akbari and P. Aimar, J. Membr. Sci., 238, 177 (2004).CrossRefGoogle Scholar
  31. 31.
    E. Sjöman, M. Mänttäri, M. Nyström, H. Koivikko and H. Heikkilä, J. Membr. Sci., 292, 106 (2007).CrossRefGoogle Scholar
  32. 32.
    Chemeo. 2016. “Chemical Properties of Xylitol.” Accessed 19 Oct Scholar
  33. 33.
    L. Braeken, R. Ramaekers, Y. Zhang, G. Maes, B. Van der Bruggen and C. Vandecasteele, J. Membr. Sci., 252, 195 (2005).CrossRefGoogle Scholar
  34. 34.
    K. Mah, H. Yussof, N. Jalanni, M. A. Seman and N. Zainol, Jurnal Teknologi., 1, 93 (2014).Google Scholar
  35. 35.
    S. S. da Silva and A. K. Chandel, D-Xylitol, Springer (2012).CrossRefGoogle Scholar
  36. 36.
    M.C. Gray, A.O. Converse and C. E. Wyman, Biotechnology for Fuels and Chemicals, Springer, 179 (2003).CrossRefGoogle Scholar
  37. 37.
    Y.T. Chung, M. M. Ba-Abbad, A.W. Mohammad, N. H. H. Hairom and A. Benamor, Mater. Design, 87, 780 (2015).CrossRefGoogle Scholar
  38. 38.
    M. Peydayesh, M. Bagheri, T. Mohammadi and O. Bakhtiari, RSC Adv., 7, 24995 (2017).CrossRefGoogle Scholar
  39. 39.
    E. J. Jelmy, S. Ramakrishnan, S. Devanathan, M. Rangarajan and N. K. Kothurkar, J. Appl. Polym. Sci., 130, 1047 (2013).CrossRefGoogle Scholar
  40. 40.
    A. Abuhabib, M. Ghasemi, A.W. Mohammad, R.A. Rahman and A. El-Shafie, Arabian J. Sci. Eng., 38, 2929 (2013).CrossRefGoogle Scholar
  41. 41.
    J. Salimon, B. M. Abdullah and N. Salih, Chem. Central J., 6, 1 (2012).CrossRefGoogle Scholar
  42. 42.
    H. Rezaei, F. Z. Ashtiani and A. Fouladitajar, Brazilian J. Chem. Eng., 31, 503 (2014).CrossRefGoogle Scholar
  43. 43.
    J. E. Almazán, E.M. Romero-Dondiz, V.B. Rajal and E.F. Castro-Vidaurre, Chem. Eng. Res. Des., 94, 485 (2015).CrossRefGoogle Scholar
  44. 44.
    R. Vegas, A. Moure, H. Domínguez, J. C. Parajó, J.R. Álvarez and S. Luque, Desalination, 199, 541 (2006).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Khalefa Atya Faneer
    • 1
    • 2
    • 3
  • Rosiah Rohani
    • 1
    • 2
    Email author
  • Abdul Wahab Mohammad
    • 1
    • 2
  • Muneer Mohammed Ba-Abbad
    • 1
    • 2
    • 4
  1. 1.Department of Chemical and Process EngineeringUniversiti Kebangsaan Malaysia, UKM BangiBangiMalaysia
  2. 2.Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Environment EngineeringHigh Institute for Comprehensive ProfessionsBent Baya, Wadi Al-AjalLibya
  4. 4.Department of Chemical Engineering, Faculty of Engineering and PetroleumHadhramout University of Science & TechnologyMukalla, HadhramoutYemen

Personalised recommendations