Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 10, pp 2678–2685 | Cite as

Effects of supplement additives on anaerobic biogas production

  • Minsoo Kim
  • Dan Li
  • Okkyoung Choi
  • Byoung-In Sang
  • Pen Chi Chiang
  • Hyunook KimEmail author
Biotechnology

Abstract

Anaerobic digestion (AD) converts biomass to biogas. However, its performance is often affected by the nutrient condition of AD substrate. In this study, a few substrate supplements were selected to promote the biogas production; MgO, FeCl3, and cellulase were selected based on the result from elemental analyses of the biomass. The potential impact of the additives on AD process was evaluated by performing a series of biochemical methane potential (BMP) tests. BMP reactors with the substrate with one of the selected additives (i.e., MgO of 380 mg Mg L−1, FeCl3 of 88 mg Fe L−1 or cellulase of 25 mg L−1) exhibited higher microbial activity; 5–15% more biogas production was observed, compared to the blank. Microbial community analysis showed that different additives resulted in proliferation of different microbial species. Therefore, it was decided to add the mixture of the three additives to the biomass. Addition of the mixed additive resulted in 22% more gas production.

Keywords

Anaerobic Digestion Biochemical Methane Potential (BMP) Test Additives Microbial Activity Biogas Production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Murto, L. Björnsson and B. Mattiasson, J. Environ. Manage., 70, 2 (2004).CrossRefGoogle Scholar
  2. 2.
    B. S. Lee, S. C. Nam and W. Namkong, J. Korea Soc. Waste Manage., 28, 6 (2011).Google Scholar
  3. 3.
    D. H. Kim, H. S. Shin and S. E. Oh, J. Korea Soc. Waste Manage., 25, 8 (2008).Google Scholar
  4. 4.
    S. Lee, Y. S. Yoon, J. G. Kang, K. H. Kim and S. K. Shin, J. Korea Org. Resour. Recycl. Assoc., 24, 1 (2016).Google Scholar
  5. 5.
    Y. G. Chen, S. Jiang, H. Y. Yuan, Q. Zhou and G. W. Gu, Water Res., 41, 30 (2007).Google Scholar
  6. 6.
    K. Wang, J. Yin, D. Shen and N. Li, Bioresour. Technol., 161, 395 (2014).CrossRefGoogle Scholar
  7. 7.
    Y. Chen, J. J. Cheng and K. S. Creamer, Bioresour. Technol., 99, 10 (2008).Google Scholar
  8. 8.
    C. Dumas, G. S. G. Damasceno, A. Barakat, H. Carrère, J. P. Steyer and X. Rouau, Ind. Crops. Prod., 74, 450 (2015).CrossRefGoogle Scholar
  9. 9.
    H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos and I. Ferrer, Bioresour. Technol., 199, 386 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Schattauer, E. Abdoun, P. Weiland, M. Plöchl and M. Heiermann, Biosyst. Eng., 108, 1 (2011).CrossRefGoogle Scholar
  11. 11.
    I. A. Nges and L. Björnsson, Biomass Bioenergy, 47, 62 (2012).CrossRefGoogle Scholar
  12. 12.
    M. S. Romero-Güiza, J. Vila, J. Mata-Alvarez, J. M. Chimenos and S. Astals, Renew. Sust. Energy Rev., 58, 1486 (2016).CrossRefGoogle Scholar
  13. 13.
    Y. Liu, S. Kumar, J. H. Kwag and C. Ra, J. Chem. Technol. Biotechnol., 88, 2 (2013).Google Scholar
  14. 14.
    B. Demirel and P. Scherer, Biomass Bioenergy, 35, 3 (2011).CrossRefGoogle Scholar
  15. 15.
    W. Zhang, L. Zhang and A. Li, Water Res., 84, 266 (2015).CrossRefGoogle Scholar
  16. 16.
    J. L. Linville, Y. Shen, R. P. Schoene, M. Nguyen, M. Urgun-Demirtas and S. W. Snyder, Process Biochem., 51, 9 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Liu, Y. Zhang, X. Quan, Y. Li, Z. Zhao, X. Meng and S. Chen, Chem. Eng. J., 192, 179 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Y. Feng, Q. Yu, Z. Xu and X. Quan, Bioresour. Technol., 159, 297 (2014).CrossRefGoogle Scholar
  19. 19.
    T. Schmidt, M. Nelles, F. Scholwin and J. Pröter, Bioresour. Technol., 168, 80 (2014).CrossRefGoogle Scholar
  20. 20.
    W. Parawira, Crit. Rev. Biotechnol., 32, 2 (2012).CrossRefGoogle Scholar
  21. 21.
    M. H. Gerardi, The microbiology of anaerobic digesters, Wiley, Canada (2003).CrossRefGoogle Scholar
  22. 22.
    J. Ariunbaatar, A. Panico, G. Esposito, F. Pirozzi and P. N. Lens, Appl. Energy, 123, 143 (2014).CrossRefGoogle Scholar
  23. 23.
    J. C. Frigon, P. Mehta and S. R. Guiot, Biomass Bioenergy, 36, 1 (2012).CrossRefGoogle Scholar
  24. 24.
    S. Yu, G. Zhang, J. Li, Z. Zhao and X. Kang, Bioresour. Technol., 146, 758 (2013).CrossRefGoogle Scholar
  25. 25.
    K. Möller and T. Müller, Eng. Life Sci., 12, 3 (2012).CrossRefGoogle Scholar
  26. 26.
    V. Facchin, C. Cavinato, F. Fatone, P. Pavan, F. Cecchi and D. Bolzonella, Biochem. Eng. J., 70, 71 (2013).CrossRefGoogle Scholar
  27. 27.
    Y. Li, L. Feng, R. Zhang, Y. He, X. Liu, X. Xiao, X. Ma, C. Chen and G. Liu, Appl. Biochem. Biotechnol., 171, 1 (2013).CrossRefGoogle Scholar
  28. 28.
    V. Sonakya, N. Raizada and V. C. Kalia, Biotechnol. Lett., 23, 18 (2001).CrossRefGoogle Scholar
  29. 29.
    K. Fricke, H. Santen, R. Wallmann, A. Huttner and N. Dichtl, Waste Manage., 27, 30 (2007).CrossRefGoogle Scholar
  30. 30.
    S. L. Chiu and I. M. Lo, Environ. Sci. Pollut. R., 23, 24 (2016).CrossRefGoogle Scholar
  31. 31.
    V. Cabbai, M. Ballico, E. Aneggi and D. Goi, Waste Manage., 33, 7 (2013).CrossRefGoogle Scholar
  32. 32.
    K. Koch, Y. B. Fernández and J. E. Drewes, Bioresour. Technol., 186, 173 (2015).CrossRefGoogle Scholar
  33. 33.
    APHA, Standard Methods for Examinations of Water and Wastewater, Am. J. Public Health, Washington, D.C. (2005).Google Scholar
  34. 34.
    W. C. Boyle, Energy recovery from sanitary landfills—a review, Microb. Energ. Convers. Pergamon Press, Oxford, U.K. (1976).Google Scholar
  35. 35.
    F. Raposo, V. Fernández-Cegrí, M. A. De la Rubia, R. Borja, F. Béline, C. Cavinato, G. Demirer, B. Fernández, M. Fernández-Polanco, J. C. Frigon, R. Ganesh, P. Kaparaju, J. Koubova, R. Méndez, G. Menin, A. Peene, P. Scherer, M. Torrijos, H. Uellendahl, I. Wierinck and V. de Wilde, J. Chem. Technol. Biotechnol., 86, 8 (2011).Google Scholar
  36. 36.
    D. W. Fadrosh, B. Ma, P. Gajer, N. Sengamalay, S. Ott, R. M. Brotman and J. Ravel, Microbiome, 2, 1 (2014).CrossRefGoogle Scholar
  37. 37.
    H. C. Shin, D. H. Ju, B. S. Jeon, O. Choi, H. W. Kim, Y. Um, D. H. Lee and B. I. Sang, PloS One, 10, 12 (2015).Google Scholar
  38. 38.
    Y. S. Jeon, S. C. Park, J. Lim, J. Chun and B. S. Kim, J. Microbiol., 53, 1 (2015).CrossRefGoogle Scholar
  39. 39.
    M. Hamady, C. Lozupone and R. Knight, ISME J., 4, 1 (2010).CrossRefGoogle Scholar
  40. 40.
    B. Kanokwan, Online monitoring and control of the biogas process, Ph. D. Thesis, Inst. Environ. Resour., Technical University of Denmark (2006).Google Scholar
  41. 41.
    M. B. Osuna, M. H. Zandvoort, J. M. Iza, G. Lettinga and P. N. L. Lens, Environ. Technol., 24, 5 (2003).CrossRefGoogle Scholar
  42. 42.
    L. Zhang, J. Keller and Z. Yuan, Water Res., 43, 17 (2009).Google Scholar
  43. 43.
    R. Binner, V. Menath, H. Huber, M. Thomm, F. Bischof, D. Schmack and M. Reuter, Biomass Convers. Biorefin., 1, 1 (2011).CrossRefGoogle Scholar
  44. 44.
    F. Ali Shah, Q. Mahmood, M. Maroof Shah, A. Pervez and S. Ahmad Asad, Scientific World J., 2014, 1 (2014).CrossRefGoogle Scholar
  45. 45.
    C. E. Manyi-Loh, S. N. Mamphweli, E. L. Meyer, A. I. Okoh, G. Makaka and M. Simon, Int. J. Environ. Res. Public Health, 10, 9 (2013).CrossRefGoogle Scholar
  46. 46.
    L. Ganzert, J. Schirmack, M. Alawi, K. Mangelsdorf, W. Sand, A. Hillebrand-Voiculescu and D. Wagner, Int. J. Syst. Evol. Microbiol., 64, 10 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Minsoo Kim
    • 1
  • Dan Li
    • 1
  • Okkyoung Choi
    • 2
  • Byoung-In Sang
    • 2
  • Pen Chi Chiang
    • 3
  • Hyunook Kim
    • 1
    Email author
  1. 1.Department of Environmental EngineeringUniversity of SeoulSeoulKorea
  2. 2.Department of Chemical EngineeringHanyang UniversitySeoulKorea
  3. 3.Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations