Skip to main content
Log in

Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Styrene monomer is a volatile organic compound that has many applications in plastics, rubber, and paint manufacturing industries. Exposure to styrene vapor has certain effects, including suppression of the central nervous system, loss of concentration, weakness and fatigue, and nausea and there is a possibility of carcinogenesis in long-term exposure. Therefore, it is necessary to control and eliminate this vapor. The aim of this study was to investigate the performance of zinc oxide nanoparticles on modified natural zeolites in removing styrene vapor from the air. Natural zeolites of clinoptilolite were modified using hydrochloric acid and diphenyldichlorosilane. Next, zinc oxide nanoparticles with different ratios of 3, 5, and 10 wt% were stabilized on the zeolites. To determine their characteristics, samples were used from BET, SEM and XRD analyses. The input styrene concentration and the ratio of nanoparticles stabilized on zeolites were studied as effective functional parameters on the removal process. The efficiency results of natural zeolites (Ze) and modified zeolites (Mze) in styrene adsorption from the air show that the styrene breakthrough in the bed of MZe compared to that of Ze increases approximately two times. Also, the results showed that the removal by the process of UV/MZe-ZnO 3%, UV/MZe-ZnO 5%, and UV/MZe-ZnO 10%, was 36.5%, 40%, and 26%, respectively. From the results it can be concluded that MZe can increase the efficiency of photocatalytic degradation. Clinoptilolites of Iran can be used as an adsorbent to remove polluted air in industries that have low concentrations and flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hunter and S.T. Oyama, Control of volatile organic compound emissions, John Wiley (2000).

    Google Scholar 

  2. US Environmental Protection Agency (USEPA). Sources of indoor air pollution - organic gases (volatile organic compounds, VOCs). USEPA (2013).

  3. J. Grzechulska-Damszel, S. Mozia and A.W. Morawski, Catal. Today, 156, 295 (2010).

    Article  CAS  Google Scholar 

  4. R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon, Korean J. Chem. Eng., 25, 64 (2008).

    Article  CAS  Google Scholar 

  5. J. C. Crittenden, J. Liu, D.W. Hand and D. L. Perram, Water Res., 31, 429 (1997).

    Article  CAS  Google Scholar 

  6. H. I. De Lasa, B. Serrano and M. Salaices, Photocatal. React. Engin. Springer (2005).

    Book  Google Scholar 

  7. J. Saien and A.R. Soleymani, J. Ind. Eng. Chem., 18, 1683 (2012).

    Article  CAS  Google Scholar 

  8. T. Charinpanitkul, P. Nartpochananon, T. Satitpitakun, J. Wilcox, T. Seto and Y. Otani, J. Ind. Eng. Chem., 18, 469 (2012).

    Article  CAS  Google Scholar 

  9. W. Zhang, Z. Li, Y. Luo and J. Yang, J. Phys. Chem. C., 113, 8302 (2009).

    Article  CAS  Google Scholar 

  10. K. Hashimoto, H. Irie and A. Fujishima, Japan J. Appl. Phys., 44, 8269 (2005).

    Article  CAS  Google Scholar 

  11. A. Fujishima, X. Zhang and D.A. Tryk, Surface Science Reports., 63, 515 (2008).

    Article  CAS  Google Scholar 

  12. M. Muruganandham, Y. Zhang, R. Suri, G.-J. Lee, P.-K. Chen, S.-H. Hsieh, M. Sillanpyää and J. J. Wu, J. Nanosci. Nanotechnol., 15, 6900 (2015).

    Article  CAS  Google Scholar 

  13. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. (2009).

    Google Scholar 

  14. D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa and T. Fukuda, Progress in Crystal Growth and Characterization of Materials, 52, 280 (2006).

    Article  CAS  Google Scholar 

  15. G. B. Tabrizi and M. Mehrvar, J. Environ. Sci. Heal, Part A., 39, 3029 (2004).

    Article  Google Scholar 

  16. B. Jibril, A. Atta, Y. Al-Waheibi and T. Al-Waheibi, J. Ind. Eng. Chem., 19, 1800 (2013).

    Article  CAS  Google Scholar 

  17. M. Safari, M. Nikazar and M. Dadvar, J. Ind. Eng. Chem., 19, 1697 (2013).

    Article  CAS  Google Scholar 

  18. T. Komatsu, M. Takasaki, K. Ozawa, S. Furukawa and A. Muramatsu, J. Phys. Chem. C., 117, 10483 (2013).

    Article  CAS  Google Scholar 

  19. A. Nezamzadeh-Ejhieh and S. Khorsandi, J. Ind. Eng. Chem., 20, 937 (2014).

    Article  CAS  Google Scholar 

  20. N. Mansouri, M. reza Massoudinejad, H. Asilian and A. Mafreshi, J. Kermanshah. Univ. Med. Sci., 14, 3 (2010).

    Google Scholar 

  21. S. Alejandro, H. Valdés, M.-H. Manero and C.A. Zaror, Water Sci. Technol., 66, 1759 (2012).

    Article  CAS  Google Scholar 

  22. H. Valdés, S. Alejandro and C. A. Zaror, J. Hazard. Mater., 227, 34 (2012).

    Article  Google Scholar 

  23. M.A.A. Shahmirzadi, S.S. Hosseini and N.R. Tan, Korean J. Chem. Eng., 33, 3529 (2016).

    Article  CAS  Google Scholar 

  24. V.R. Posa, V. Annavaram, J.R. Koduru, V.R. Ammireddy and A.R. Somala, Korean J. Chem. Eng., 33, 456 (2016).

    Article  CAS  Google Scholar 

  25. C. Ao and S. Lee, Appl. Catal. B: Environ., 44, 191 (2003).

    Article  CAS  Google Scholar 

  26. C. Ao and S. Lee, J. Photochem. Photobio. A: Chem., 161, 131 (2004).

    Article  CAS  Google Scholar 

  27. H. Ichiura, T. Kitaoka and H. Tanaka, Chemosphere, 50, 79 (2003).

    Article  CAS  Google Scholar 

  28. P. Zhang, J. Liu and Z. Zhang, Chem. Lett., 33, 1242 (2004).

    Article  CAS  Google Scholar 

  29. R.-D. Sun, A. Nakajima, I. Watanabe, T. Watanabe and K. Hashimoto, J. Photochem. Photobio. A: Chem., 136, 111 (2000).

    Article  CAS  Google Scholar 

  30. U.S.E.P.A. (USEPA). Sources of indoor air pollution-organic gases (volatile organic compounds, VOCs). http://www.epa.gov/iaq/voc.html.

  31. A. Tossavainen, The Scandinavian Journal of Work, Environment & Health, 4 (1978).

    Google Scholar 

  32. EPA. Drinking Water Standards Technical Factsheet on: Styrene. Water, 1 (1993).

  33. M. Lim, Y. Zhou, B. Wood, Y. Guo, L. Wang, V. Rudolph and G. Lu, J. Phys. Chem. C., 112, 19655 (2008).

    Article  CAS  Google Scholar 

  34. TOXICOLOGICAL PROFILE FOR STYRENE, Life Systems, Inc. Under Subcontract to:Clement International Corporation Under Contract No. 205 88-0608. Agency for Toxic Substances and Disease Registry U.S. Public Health Service (1992).

  35. Threshold Limit Value For Chemical Substances And Physical Agents And Biological Exposure Indices, American Conferences Of Government Industrial Hygienists (ACGIH) (2012).

  36. P. Huttenloch, K. E. Roehl and K. Czurda, Environ. Sci. Technol., 35, 4260 (2001).

    Article  CAS  Google Scholar 

  37. H. Asilian, A. Khavanin, M. Afzali and S. Dehestani, Health Scope., 2012, 7 (2012).

    Article  Google Scholar 

  38. Y.-P. Zhu, M. Li, Y.-L. Liu, T.-Z. Ren and Z.-Y. Yuan, J. Phys. Chem. C., 118, 10963 (2014).

    Article  CAS  Google Scholar 

  39. M. Hernandez, L. Corona, A. Gonzalez, F. Rojas, V. Lara and F. Silva, Ind. Eng. Chem Res., 44, 2908 (2005).

    Article  CAS  Google Scholar 

  40. M. Khatamian and Z. Alaji, Desalination, 248, 286 (2012).

    Google Scholar 

  41. J.-C. Chen and C.-T. Tang, J. Hazard. Mater., 142, 88 (2007).

    Article  CAS  Google Scholar 

  42. J. Mo, Y. Zhang, Q. Xu, J. J. Lamson and R. Zhao, Atmosph. Environ., 43, 2229 (2009).

    Article  CAS  Google Scholar 

  43. R.K. Nath, M. F. M. Zain, A. A. H. Kadhum and A. Kaish, Construction and Building Materials, 54, 348 (2014).

    Article  Google Scholar 

  44. D.A. Friesen, L. Morello, J.V. Headley and C. H. Langford, J. Photochem. Photobio. A: Chem, 133, 213 (2000).

    Article  CAS  Google Scholar 

  45. F. J. DeSilva, Water quality products, 16 (2000).

    Google Scholar 

  46. A. Rezaee, H. Rangkooy, A. Jonidi-Jafari and A. Khavanin, Appl. Surf. Sci, 286, 235 (2013).

    Article  CAS  Google Scholar 

  47. H.C. Wang, H. S. Liang and M. B. Chang, J. Hazard. Mater., 186, 1781 (2011).

    Article  CAS  Google Scholar 

  48. T. Mishra, P. Mohapatra and K. M. Parida, Appl. Catal. B: Environ, 79, 3 (2008).

    Article  Google Scholar 

  49. E. Rezaei, J. Soltan and N. Chen, Appl. Catal. B: Environ., 136, 239 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Rangkooy, H., Pour, M.N. & Dehaghi, B.F. Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air. Korean J. Chem. Eng. 34, 3142–3149 (2017). https://doi.org/10.1007/s11814-017-0174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0174-2

Keywords

Navigation