Skip to main content
Log in

A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R 2. In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The properties of gases and liquids, Mcgraw-hill, NY (2001).

    Google Scholar 

  2. T. Ghosh, D. Prasad, N. Dutt and K. Rani, Viscosity of liquids: Theory, estimation, experiment, and data, Springer, NY (2007).

    Google Scholar 

  3. M. Hobson and J.H. Weber, AIChE J., 2, 354 (1956).

    Article  CAS  Google Scholar 

  4. L. Constantinou, R. Gani and J. P. O’Connell, Fluid Phase Equilib., 103, 11 (1995).

    Article  CAS  Google Scholar 

  5. H. S. Elbro, A. Fredenslund and P. Rasmussen, Ind. Eng. Chem. Res., 30, 2576 (1991).

    Article  CAS  Google Scholar 

  6. B. H. Park, M. S. Yeom, K.-P. Yoo and C. S. Lee, Korean J. Chem. Eng., 15, 246 (1998).

    Article  CAS  Google Scholar 

  7. J. Park and D. Paul, J. Membr. Sci., 125, 23 (1997).

    Article  CAS  Google Scholar 

  8. D. Sola, A. Ferri, M. Banchero, L. Manna and S. Sicardi, Fluid Phase Equilib., 263, 33 (2008).

    Article  CAS  Google Scholar 

  9. P.R. Duchowicz, A. Talevi, L. E. Bruno-Blanch and E. A. Castro, Biorg. Med. Chem., 16, 7944 (2008).

    Article  CAS  Google Scholar 

  10. Y. Dadmohammadi, S. Gebreyohannes, B. J. Neely and K. A. Gasem, Fluid Phase Equilib., 409, 318 (2016).

    Article  CAS  Google Scholar 

  11. S. S. Godavarthy, R. L. Robinson and K. A. Gasem, Fluid Phase Equilib., 246, 39 (2006).

    Article  CAS  Google Scholar 

  12. A.R. Katritzky, V. S. Lobanov and M. Karelson, Chem. Soc. Rev., 24, 279 (1995).

    Article  CAS  Google Scholar 

  13. H. Maadani, M. Salahinejad and J. Ghasemi, SAR QSAR Environ. Res., 26, 1033 (2015).

    Article  CAS  Google Scholar 

  14. B. Wang, L. Zhou, K. Xu and Q. Wang, Ind. Eng. Chem. Res., 56, 47 (2017).

    Article  Google Scholar 

  15. L.C. Yee and Y.C. Wei, Current modeling methods used in qsar/qspr, Wiley-VCH: Weinheim, Germany (2012).

    Book  Google Scholar 

  16. L. S. Aiken, S. G. West and S. C. Pitts, Multiple linear regression: Testing and interpreting interactions, Sage, CA (1991).

    Google Scholar 

  17. Y. Ammi, L. Khaouane and S. Hanini, Korean J. Chem. Eng., 32, 2300 (2015).

    Article  CAS  Google Scholar 

  18. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi and Z. Alaee, Korean J. Chem. Eng., 33, 1352 (2016).

    Article  CAS  Google Scholar 

  19. E. Mohagheghian, H. Zafarian-Rigaki, Y. Motamedi-Ghahfarrokhi and A. Hemmati-Sarapardeh, Korean J. Chem. Eng., 32, 2087 (2015).

    Article  CAS  Google Scholar 

  20. M. Luckas and K. Lucas, AIChE J., 32, 139 (1986).

    Article  CAS  Google Scholar 

  21. W.D. Monnery, W.Y. Svrcek and A.K. Mehrotra, Can. J. Chem. Eng., 73, 3 (1995).

    Article  CAS  Google Scholar 

  22. A. Jegadeesan, Structure-based generalized models for selected purefluid saturation properties, Oklahoma State University, M.S. Thesis (2006).

    Google Scholar 

  23. R.D. Shaver, New scaled-variable-reduced-coordinate framework for correlation of pure fluid saturation properties, Oklahoma State University, M.S. Thesis (1990).

    Google Scholar 

  24. R. Shaver, R. Robinson and K. Gasem, Fluid Phase Equilib., 64, 141 (1991).

    Article  CAS  Google Scholar 

  25. R. Shaver, R. Robinson and K. Gasem, Fluid Phase Equilib., 78, 81 (1992).

    Article  CAS  Google Scholar 

  26. M. McHugh and V. Krukonis, Supercritical fluid extraction: Principles and practice, Elsevier (2013).

    Google Scholar 

  27. W. Sauerbrei and M. Schumacher, Stat. Med., 11, 2093 (1992).

    Article  CAS  Google Scholar 

  28. E.W. Steyerberg, M. J. Eijkemans and J.D. F. Habbema, J. Clin. Epidemiol., 52, 935 (1999).

    Article  CAS  Google Scholar 

  29. R.M. O’brien, Quality & Quantity, 41, 673 (2007).

    Article  Google Scholar 

  30. N. Dutt, Y. Ravikumar and K.Y. Rani, Chem. Eng. Commun., 200, 1600 (2013).

    Article  CAS  Google Scholar 

  31. Y. Zhao, X. Zhang, L. Deng and S. Zhang, Comput. Chem. Eng., 92, 37 (2016).

    Article  CAS  Google Scholar 

  32. B.-K. Chen, M.-J. Liang, T.-Y. Wu and H. P. Wang, Fluid Phase Equilib., 350, 37 (2013).

    Article  CAS  Google Scholar 

  33. R. L. Gardas and J.A. Coutinho, Fluid Phase Equilib., 266, 195 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Ryook Yang.

Additional information

This article is dedicated to Prof. Ki-Pung Yoo on his honorable retirement from Sogang University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Park, K., Kwon, Y. et al. A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds. Korean J. Chem. Eng. 34, 2715–2724 (2017). https://doi.org/10.1007/s11814-017-0173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0173-3

Keywords

Navigation