Skip to main content

Advertisement

Log in

Gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes in a microwave plasma reactor

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of plasma power (1–1.8 kW), oxygen/fuel (0–2.5) and steam/fuel ratios (0–1) on the gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes have been determined in a microwave plasma reactor. GFRP, which is thermosetting plastic composed of glass fibers embedded within a polymer matrix, was used as an experimental sample. While carbon conversion increased with oxygen/fuel ratio, syngas heating value and cold gas efficiency decreased with oxygen supply due to the onset of combustion. With increasing steam/fuel ratio, water-gas shift and ion-reforming reaction favored higher concentration of H2. Increasing the plasma power was found to promote the conversion of carbon dioxide to carbon monoxide. The char surfaces of GFRP that were subjected to variable power and oxygen supplies were analyzed by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jahn and E. Witten, The global CRP 2013 Report (Market development, trends challenges and opportunities), Sept (2013).

    Google Scholar 

  2. L. Gray, MANE-6960-Solid and Hazardous waste prevention and control Engineering, Renselaer Hartford, U.S.A. (2014).

    Google Scholar 

  3. S. H. Jung, M. H. Cho, B. S. Kang and J. S. Kim, Fuel. Process. Technol., 91, 277 (2010).

    Article  CAS  Google Scholar 

  4. J. S. Bae, D.W. Lee, S. J. Park, Y. J. Lee, J.C. Hong, C. Han and Y.C. Choi, Korean J. Chem. Eng., 30(2), 321 (2013).

    Article  CAS  Google Scholar 

  5. A. Noma, M. Mawatati, C. Goto, Y. Hoshi, K. Inoue and K. Yoshikawa, Ind. Eng. Chem., 45, 5127 (2006).

    Article  CAS  Google Scholar 

  6. Y. Kuo, C.T. Wang, C. H. Tsai and L. C. Wang, J. Hazard. Mater., 162, 469 (2009).

    Article  CAS  Google Scholar 

  7. H. S. Uhm, Y. C. Hong and D. H. Shin, Plasma Sources Sci. Technol., 15(2), S26 (2006).

    Article  Google Scholar 

  8. J.R. Roth, Industrial Plasma Engineering, London: Institute of Physics (1945).

    Google Scholar 

  9. Y. C. Hong, S. J. Lee, Y. J. Kim, B. J. Lee, S. Y. Cho and H. S. Chang, Energy, 47, 36 (2012).

    Article  CAS  Google Scholar 

  10. S. J. Yoon and J.G. Lee, Int. J. Hydrogen. Energy, 37, I7093 (2012).

    Google Scholar 

  11. J. L. Shie, L. X. Chen, K. L. Lin and C.Y. Chang, Energy, 66, 82 (2014).

    Article  CAS  Google Scholar 

  12. L. Tang and H. Huang, Fuel, 84, 2055 (2005).

    Article  CAS  Google Scholar 

  13. S. J. Yoon, Y.M. Yun, M.W. Seo, Y.K. Kim, H.W. Ra and J.G. Lee, Int. J. Hydrogen. Energy, 38, I4559 (2013).

    Google Scholar 

  14. P. Basu, Combustion and gasification in fluidized beds, Boca Raton: Taylor and Francis (2006).

    Book  Google Scholar 

  15. J. Huang and D. Ibrahim, Int. J. Hydrogen. Energy, 39, 3294 (2014).

    Article  CAS  Google Scholar 

  16. D. Levko, A. Shchedrin, V. Chernyak, S. Olszewski and O. Nedybaliuk, J. Phys. D: Appl. Phys., 44, 145206 (2011).

    Article  Google Scholar 

  17. M. Hrabovsky, The Open Plasma Physics J., 2, 99 (2009).

    Article  CAS  Google Scholar 

  18. Q. Zhang, L. Dor, D. Fenigshtein, W. Yang and W. Blasiak, Appl. Energy (2011), DOI:10.1016/j.penergy.2011.01.041.

    Google Scholar 

  19. R. Govind and J. Shah, AIChE J., 30(1), 79 (1984).

    Article  CAS  Google Scholar 

  20. S. Moon and W. Choe, Phys. Plasma, 9, 4045 (2002).

    Article  CAS  Google Scholar 

  21. L. Spencer and A. Gallimore, Plasma Chem. Plasma Process (2010), DOI:10.1007/s1 1090-010-9273-0.

    Google Scholar 

  22. C. Liu and G. Xu, Fuel. Process. Technol., 58, 119 (1999).

    Article  CAS  Google Scholar 

  23. R.K. Sharma, J. B. Wooten, V. L. Baliga and M.R. Hajaligol, Fuel, 80, 1825 (2001).

    Article  CAS  Google Scholar 

  24. M.A. Sukiran, L. S. Kheang, N.A. Bakar and C.Y. May, Am. J. Appl. Sci., 8(10), 984 (2011).

    Article  CAS  Google Scholar 

  25. J. Bae, D. Lee, Y. Lee, S. Park, J. Park, J. Hong, J. Kim, P. Yoon, H. Kim, C. Han and Y. Choi, Powder Technol., 254, 72 (2014).

    Article  CAS  Google Scholar 

  26. R.M. Kelly, J.R. Kennerley and C.D. Rudd, Compos. Sci. Technol., 60, 509 (2000).

    Article  Google Scholar 

  27. F.A. Lopez, M. I. Martin, F. J. Alguacil, J. M. Rincon, T. A. Centeno and M. Romero, J. Anal. Appl. Pyrol., 93, 104 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung Won Seo or Jae Ho Kim.

Additional information

5th International Conference on Gasification and Its Application.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y.M., Seo, M.W., Ra, H.W. et al. Gasification characteristics of glass fiber-reinforced plastic (GFRP) wastes in a microwave plasma reactor. Korean J. Chem. Eng. 34, 2756–2763 (2017). https://doi.org/10.1007/s11814-017-0168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0168-0

Keywords

Navigation