Skip to main content
Log in

Sparse probabilistic principal component analysis model for plant-wide process monitoring

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the industrial monitoring process, probabilistic principal component analysis (PPCA) is a popular algorithm for reducing the dimension. However, the principal components (PCs) are not easy to interpret and its preserved number cannot be determined automatically. In this paper, we propose a sparse PPCA (SPPCA) to improve the interpretability by adding a prior and introducing sparsification to the loading matrix of PPCA. An expectation-maximization (EM) algorithm is used to obtain the parameters of the probabilistic formulation, and the dimensionality of the latent variable space can be automatically determined during the iterative process. With the sparse representation, a process monitoring strategy is then developed with the construction of several partial PPCA models. Case studies of SPPCA to a numerical case and Tennessee Eastman (TE) benchmark process demonstrate its feasibility and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Chiang, E. L. Russell and R. D. Braatz, Meas. Sci. Technol., 12, 1745 (2001).

    Google Scholar 

  2. S. J Qin, J. Chemom., 17, 480 (2003).

    Article  Google Scholar 

  3. Y. Zhan and S. J. Qin, AIChE. J., 54, 3207 (2008).

    Article  Google Scholar 

  4. X. Wang, U. Kruger, G. W. Irwin, G. McCullough and N. McDowell, IEEE Trans. Control Syst. Technol., 16, 122 (2008).

    Article  Google Scholar 

  5. Y. Zhang and C. Ma, Chem. Eng. Sci., 66, 64 (2011).

    Article  CAS  Google Scholar 

  6. Q. C. Jiang and X. F. Korean J. Chem. Eng., 31, 1935 (2014).

  7. M. E. Tipping and C. M. Bishop, J. R. Stat. Soc. Ser. B Statistical Methodol., 61, 611 (1999).

  8. D. Kim and I.-B. Lee, Chemom. Intell. Lab. Syst., 67, 109 (2003).

    Article  CAS  Google Scholar 

  9. S. W. Choi, J. H. Park and I.-B. Lee, Comput. Chem. Eng., 28, 1377 (2004).

    Article  CAS  Google Scholar 

  10. T. Chen and Y. Sun, Control Eng. Pract., 17, 469 (2009).

    Article  Google Scholar 

  11. Z. Q. Ge and Z. H. Song, AIChE J., 56, 2838 (2010).

    Article  CAS  Google Scholar 

  12. S. K. Vines, J. R. Stat. Soc. Ser. C-Applied Stat., 49, 441 (2000).

    Article  Google Scholar 

  13. I. T. Jolliffe, N. T. Trendafilov and M. Uddin, J. Comput. Graph. Stat., 12, 531 (2003).

    Article  Google Scholar 

  14. H. Zou, T. Hastie and R. Tibshirani, J. Comput. Graph. Stat., 15, 265 (2006).

    Article  Google Scholar 

  15. L. Xie, X. Lin and J. Zeng, Ind. Eng. Chem. Res., 52, 17475 (2013).

    Article  CAS  Google Scholar 

  16. M. E. Tipping, J. Mach. Learn. Res., 1, 211 (2001).

    Google Scholar 

  17. C. D. Sigg and J. M. Buhmann, Proc. 25th Int. Conf. Mach. Learn. - ICML’ 08., 960 (2008).

    Book  Google Scholar 

  18. G. Cawley, N. Talbot and M. Girolami, NIPS, 19, 209 (2007).

  19. C. Archambeau and F. R. Bach, NIPS, 1 (2008).

    Google Scholar 

  20. Y. Guan and J. G. Dy, AISTATS, 5 185 (2009).

    Google Scholar 

  21. O. Koyejo, J. Ghosh, R. Khanna and R. A. Poldrack, NIPS, 676 (2014).

    Google Scholar 

  22. R. Khanna, J. Ghosh, R. Poldrack and O. O. Koyejo, AISTATS, 38, 453 (2015).

    Google Scholar 

  23. P. Latouche, P. A. Mattei, C. Bouveyron and J. Chiquet, J. Multivariate Anal., 146, 177 (2014).

  24. C. Bouveyron, P. Latouche and P. A. Mattei, Bayesian variable selection for globally sparse probabilistic PCA, Technical Report, HAL-01310409, Universite Paris Descartes (2016).

    Google Scholar 

  25. S. J. Qin, S. Valle and M. J. Piovoso, J. Chemometr., 15, 715 (2001).

    Article  CAS  Google Scholar 

  26. S. W. Choi and I. B. Lee, J. Process Contr., 15, 295 (2005).

    Article  CAS  Google Scholar 

  27. Y. Zhang, H. Zhou, S. J. Qin and T. Chai, IEEE T. Ind. Inform., 6, 3 (2010).

    Article  Google Scholar 

  28. B. Wang, Q. C. Jiang and X. F. Yan, Korean J. Chem. Eng., 31, 930 (2014).

    Article  CAS  Google Scholar 

  29. C. M. Bishop, NIPS, 11, 382 (1998).

    Google Scholar 

  30. C. M. Bishop, Springer-Verlag, New York (2006).

  31. E. B. Martin and A. J. Morris, J. Process Contr., 6, 349 (1996).

    Article  CAS  Google Scholar 

  32. Q. Chen, R. J. Wynne, P. Goulding and D. Sandoz, Control Eng. Pract., 8, 531 (2000).

    Article  Google Scholar 

  33. Q. Chen and U. Kruger and A. T. Y. Leung, Control Eng. Pract., 12, 267 (2004).

    Article  Google Scholar 

  34. J. J. Downs and E. F. Vogel, Comput. Chem. Eng., 17, 245 (1993).

    Article  CAS  Google Scholar 

  35. M. Grbovic, W. C. Li, P. Xu, A. K. Usadi, L. M. Song and S. Vucetic, J. Process Contr., 22, 738 (2012).

    Article  CAS  Google Scholar 

  36. Z. Ge and Z. Song, Ind. Eng. Chem. Res., 52, 1947 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Liu, K., Huang, W. et al. Sparse probabilistic principal component analysis model for plant-wide process monitoring. Korean J. Chem. Eng. 34, 2135–2146 (2017). https://doi.org/10.1007/s11814-017-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0119-9

Keywords

Navigation