Skip to main content

Advertisement

Log in

Comparison of electrodialysis and reverse electrodialysis processes in the removal of Cu(II) from dilute solutions

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Electrodialysis (ED) and electrodialysis reversal (EDR) processes have been often used for separation of ions in dilute solutions. In this study, the performance of ED and EDR processes has been examined in the removal of copper from the dilute solutions. First, applied voltage, initial concentration, flow rate, type of electrolyte and the effect of concentration were determined for both processes. Then, separation efficiency, current efficiency, energy requirement and material flux of the processes were calculated, and the performances of the processes were compared. The separation efficiency and energy consumption of EDR process were higher compared to ED process under equal operating conditions. Also, the current efficiency (39.58%) of EDR process was lower than the current efficiency (67.46%) of ED process. It can be said that the ED process is more suitable in terms of energy consumption for separation in the low flow rate and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. He, M. Ma and Z. Zhao, J. Membr. Sci., 169, 53 (2000).

    Article  CAS  Google Scholar 

  2. Ö. Arar, Ü. Yüksel, N. Kabay and M. Yüksel, Desalination, 277, 296 (2011).

    Article  CAS  Google Scholar 

  3. H. Strathmann, Sep. Purif. Methods, 14, 41 (1985).

    Article  CAS  Google Scholar 

  4. P. B. Spoor, L. Grabovska, L. Koene, L. J. J. Janssen and T. R. Ven, Chem. Eng. J., 89, 193 (2002).

    Article  CAS  Google Scholar 

  5. K. S. Rao, M. Mohapatra, S. Anand and P. Venkateswarlu, Int. J. Eng. Sci. Technol., 2(7), 81 (2010).

    Google Scholar 

  6. L. J. Andres, F. A. Riera, R. Alvarez and R. Audinos, Can. J. Chem. Eng., 72, 848 (1994).

    Article  CAS  Google Scholar 

  7. M. Alonso, A. Lopez-Delgado, A. M. Sastre and F. J. Alguacil, Chem. Eng. J., 118, 213 (2006).

    Article  CAS  Google Scholar 

  8. H. R. Mortaheb, H. Kosuge, B. Mokhtarani, M. H. Amini and H. R. Banihashemi, J. Hazard. Mater., 165, 630 (2009).

    Article  CAS  Google Scholar 

  9. P. K. Parhi, N. N. Das and K. Sarangi, J. Hazard. Mater., 172, 773 (2009).

    Article  CAS  Google Scholar 

  10. J. Marchese and M. Campderros, Desalination, 164, 141 (2004).

    Article  CAS  Google Scholar 

  11. S. K. Thampy, P. K. Narayanan, D. K. Chauhan, J. J. Trivedi, V. K. Indusekhar, T. Ramasamy, B. G. S. Prasad and J. R. Rao, Sep. Sci. Technol., 30(19), 3715 (1995).

    Article  Google Scholar 

  12. C. Fontas, N. Pont, M. Hidalgo and V. Salvado, Desalination, 200, 114 (2006).

    Article  CAS  Google Scholar 

  13. H. J. Lee, J. H. Song and S. H. Moon, Desalination, 314, 43 (2013).

    Article  CAS  Google Scholar 

  14. A. Smara, R. Delimi, E. Chainet and J. Sandeaux, Sep. Purif. Technol., 57, 103 (2007).

    Article  CAS  Google Scholar 

  15. G. Tchobanoglous, F. L. Burton, D. H. Stensel, Wastewater Engineering Treatment and Reuse, Fourth Edition, Metcalf & Eddy Inc. (Editor), McGraw-Hill Companies, Inc., New York (2003).

  16. S. W. Jack, Separation Methods Environmental Applications, Marcel Dekker, New York (1999).

    Google Scholar 

  17. F. Valero and R. Arbós, Desalination, 253(1-3), 170 (2010).

    Article  CAS  Google Scholar 

  18. L. Marder, G. O. Sulzbach, A. M. Bernardes and J. Ferreira, J. Braz. Chem. Soc., 14, 610 (2003).

    Article  CAS  Google Scholar 

  19. T. J. Butter, L. M. Evison, I. C. Hancock, F. S. Holland and K. A. Matis, Water Res., 32(2), 400 (1998).

    Article  Google Scholar 

  20. Y. Oren and Y. Egozy, Desalination, 86, 155 (1992).

    Article  CAS  Google Scholar 

  21. R. F. Costa, D. Rodrigues and J. Z. Ferreira, Sep. Sci. Technol., 33(8), 1135 (1998).

    Article  Google Scholar 

  22. H. G. Nowier, N. El-Said and H. F. Aly, J. Membr. Sci., 177, 41 (2000).

    Article  CAS  Google Scholar 

  23. M. Ben Sik Ali, A. Hafiane, M. Dhahbi and B. Hamrouni, J. Memb. Separ. Technol., 3, 67 (2014).

    Article  Google Scholar 

  24. C. V. Gherasim, J. Krivcik and P. Mikulasek, Chem. Eng. J., 256, 324 (2014).

    Article  CAS  Google Scholar 

  25. A. Abou-Shady, C. Peng, O. J. Almeria and H. Xu, Desalination, 285, 46 (2012).

    Article  CAS  Google Scholar 

  26. N. Kabay, H. Kahveci, Ö. İpek and M. Yüksel, Desalination, 198, 74 (2006).

    Article  CAS  Google Scholar 

  27. K. K. Choi and T. Y. Jeoung, Korean J. Chem. Eng., 19(1), 107 (2002).

    Article  Google Scholar 

  28. G. Lee, Desalin. Water Treat., 35, 150 (2011).

    Article  CAS  Google Scholar 

  29. CRC Handbook of Chemistry, and Physics, 70th Ed., CRC Press, Boca Raton, FL (1989).

  30. F. Valero, A. Barceló and R. Arbós, Electrodialysis Technology - Theory and Applications 3 Desalination, Trends and Technologies, M. Schorr Eds., InTech Inc. India (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sureyya Altin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altin, S., Oztekin, E. & Altin, A. Comparison of electrodialysis and reverse electrodialysis processes in the removal of Cu(II) from dilute solutions. Korean J. Chem. Eng. 34, 2218–2224 (2017). https://doi.org/10.1007/s11814-017-0115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0115-0

Keywords

Navigation