Skip to main content

Advertisement

Log in

Computational fluid dynamics study on the anode feed solid polymer electrolyte water electrolysis

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A steady-state two-dimensional model for the anode feed solid polymer electrolyte water electrolysis (SPEWE) is proposed in this paper. Finite element procedure was employed to calculate the multicomponent transfer model coupled with fluid flow in flow channels and gas diffusion layers and electrochemical kinetics in catalyst reactive surface. The performance of the anode feed SPEWE predicted by this model was compared with the published experimental results and reasonable agreement was reached. The results show that oxygen mass fraction increases because of the water oxidation when water flows from the import to the export on the anode side. On the cathode side, hydrogen mass fraction varies little since hydrogen and water mix well. The flux of water across the electrolyte increased almost linearly with the increase of the applied current density. Since the ohmic overpotential loss increasing as the solid polymer electrolytes’ thickness increasing, the performance of the anode feed SPEWE with Nafion 112, 115, 117 decreases at the same applied current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Carmo, D.L. Fritza, J. Mergela and D. Stolten, Int. J. Hydrogen Energy, 38, 4901 (2013).

    Article  CAS  Google Scholar 

  2. P. Millet, Electrochim. Acta, 39, 2501 (1994).

    Article  CAS  Google Scholar 

  3. P. Millet, M. Pineri and R. Durand, J. Appl. Electrochem., 19, 162 (1989).

    Article  CAS  Google Scholar 

  4. E. Rasten, G. Hagen and R. Tunold, Electrochim. Acta, 48, 3945 (2003).

    Article  CAS  Google Scholar 

  5. H. Görgün, Int. J. Hydrogen Energy, 31, 29 (2006).

    Article  Google Scholar 

  6. Y. J. Zhang, C. Wang, N. F. Wan, Z. X. Liu and Z.Q. Mao, Electrochem. Commun., 9, 667 (2007).

    Article  CAS  Google Scholar 

  7. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev and E. Budevski, Electrochim. Acta, 52, 3889 (2007).

    Article  CAS  Google Scholar 

  8. S.A. Grigoriev, P. Millet and V.N. Fateev, J. Power. Sources, 177, 281 (2008).

    Article  CAS  Google Scholar 

  9. J. Chattopadhyay, R. Srivastava and P.K. Srivastava, Korean J. Chem. Eng., 30, 1571 (2013).

    Article  CAS  Google Scholar 

  10. A. B. Goldberg, L. I. Kheifets, A. G. Vaganov, S. G. Ogryz’ko-Zhukovskaya and A.V. Shabalin, J. Appl. Electrochem., 22, 1147 (1992).

    Article  CAS  Google Scholar 

  11. K. Onda, T. Murakami, T. Hikosaka, M. Kobayashi, R. Notu and K. Ito, J. Electrochem. Soc., 149, A1069 (2002).

    Article  CAS  Google Scholar 

  12. P. Choi, D. G. Bessarabovb and R. Datta, Solid State Ionics, 175, 535 (2004).

    Article  CAS  Google Scholar 

  13. A. Awasthi, K. Scott and S. Basu, Int. J. Hydrogen Energy, 36, 14779 (2011)

    Article  CAS  Google Scholar 

  14. J. O’ M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969).

    Google Scholar 

  15. T. Thampan, S. Malhotra, J. Zhang and R. Datta, Catal. Today, 67, 15 (2001).

    Article  CAS  Google Scholar 

  16. A. J. Bard and L.R. Faulkner, Electrochemical Methods, Wiley, New York (1980).

    Google Scholar 

  17. X.G. Li, Principles of fuel cells, Taylor & Francis (2006).

    Google Scholar 

  18. T.A. Zawodzinski, J. Davey, J. Valerio and S. Gottesfeld, Electrochim. Acta, 40, 297 (1995).

    Article  CAS  Google Scholar 

  19. S. Motupally, A. J. Becker and J.W. Weidner, J. Electrochem. Soc., 147, 3171 (2000).

    Article  CAS  Google Scholar 

  20. T. E. Springer, T.A. Zawodzinski and S. Gottesfeld, J. Electrochem. Soc., 138, 2334 (1991).

    Article  CAS  Google Scholar 

  21. R. H. Perry and D.W. Green, Perry’s Chemical Engineer’s Handbook, Seventh Ed. (1997).

    Google Scholar 

  22. T.A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio and S. Gottesfeld, J. Electrochem. Soc., 140, 1981 (1993).

    Article  CAS  Google Scholar 

  23. H. Wu, P. Berg and X. Li, J. Power. Sources, 165, 232 (2007).

    Article  CAS  Google Scholar 

  24. G.H. Guvelioglu and H. G. Stenger, J. Power. Sources, 147, 95 (2005).

    Article  CAS  Google Scholar 

  25. T. F. Fuller and J. Newman, J. Electrochem. Soc., 5, 1218 (1993).

    Article  Google Scholar 

  26. H. Meng and C.Y. Wang, Chem. Eng. Sci., 59, 3331 (2004).

    Article  CAS  Google Scholar 

  27. K. Scott, W. Taama and J. Cruickshank, J. Power. Sources, 65, 159 (1997).

    Article  CAS  Google Scholar 

  28. S. Sportsman, D. Way and G. Pez, The 13th annual meeting of the North American Membrane Society, Long Beach, California (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguo Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Chen, G., Duan, J. et al. Computational fluid dynamics study on the anode feed solid polymer electrolyte water electrolysis. Korean J. Chem. Eng. 34, 1630–1637 (2017). https://doi.org/10.1007/s11814-017-0094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0094-1

Keywords

Navigation