Skip to main content

Advertisement

Log in

Phase behavior of arbutin/ethanol/supercritical CO2 at elevated pressures

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The phase behavior of a ternary system containing arbutin, which is effective for skin lightening, in a solvent mixture of ethanol and supercritical carbon dioxide (CO2) was investigated. A high-pressure phase equilibrium apparatus equipped with a variable-volume view cell was used to measure the phase equilibrium loci of the ethanol+CO2 binary mixture from 298.2 K to 313.2 K and pressures between 2MPa and 9MPa. The solubility of arbutin in the mixed solvent comprising ethanol and CO2, which equivalently represents the critical locus of T-x, was determined as a function of temperature, pressure, and solvent composition by measuring the cloud points under various conditions. Throughout, the arbutin loading was maintained at 1.5 wt% on a CO2-free basis in the solvent mixture and the pressure and temperature were varied up to 14 MPa and 334 K, respectively. For a CO2 loading less than 34wt% on ethanol basis, the cloud point was not observed. However, the solid remained undissolved when the CO2 loading exceeded 54 wt%. Between these loadings, steep and almost pressure-insensitive solubility curves, which extended downward to the vaporization boundary, were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Engasser and H. I. Maibach, J. Am. Acad. Dermatol., 5, 143 (1981).

    Article  CAS  Google Scholar 

  2. G. H. Findley, J. G. L. Morrison and I. W. Simon, Br. J. Dermatol., 93, 613 (1975).

    Article  Google Scholar 

  3. J.-H. Paik and M.-H. Lee, Korean J. Dermatol., 38, 1303 (2000).

    Google Scholar 

  4. K. Maeda and M. Fukuda, J. Pharm. Exp. Therap., 276, 765 (1996).

    CAS  Google Scholar 

  5. A. E. Oliver, L. M. Crowe, P. S. Araujo, de E. Fisk and J. H. Crowe, Biochim. Biophys. Acta, 1302, 69 (1996).

    Article  Google Scholar 

  6. A. Martin and M. J. Cocero, Adv. Drug Delivery Rev., 60, 339 (2008).

    Article  CAS  Google Scholar 

  7. V. J. Krukonis, Supercritical Fluid Nucleation of Difficult-to-Comminute Solids, Paper presented at the AIChE Annual Meeting, San Francisco, CA (1984).

    Google Scholar 

  8. M. E. Paulaitis, J. M. L. Penninger, R. D. Gray and P. Davidson Eds. Chemical Engineering at Supercritical Fluid Condition, Ann Arbor Science, Ann Arbor (1983).

    Google Scholar 

  9. P. M. Gallagher, M. P. Coffey, V. J. Krukonis, N. K. Klasutis, P. J. Johnston and M. L. Penninger, Supercritical Fluid Science and Technology, ACS Symposium Series 406, ACS, Washington D. C. (1989).

    Google Scholar 

  10. D.-Y. Kang, B.-J. Min, S.-G. Rho and C.-H. Kang, Korean Chem. Eng. Res., 46, 958 (2008).

    CAS  Google Scholar 

  11. B. Masoud and R. Sima, J. Supercrit. Fluids, 40, 263 (2007).

    Article  Google Scholar 

  12. D. Y. Peng and D. R. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  13. B. E. Poling, J. M. Prausnitz and J. P. O’Connel, The Properties of Gases and Liquids, 5th Ed., McGraw-Hill, New York (2001).

    Google Scholar 

  14. Y.-S. Jang, Y. S. Choi and H.-S. Byun, Korean J. Chem. Eng., 32, 958 (2015).

    Article  CAS  Google Scholar 

  15. Y.-S. Choi, S.-W. Chio and H. S. Byun, Korean J. Chem. Eng., 33, 277 (2016).

    Article  CAS  Google Scholar 

  16. C.-N. Han and C.-H. Kang, J. Nanosci. Nanotechnol., 16, 6936 (2016).

    Article  Google Scholar 

  17. P. H. van Konynenburg and R. L. Scott, Philos. Trans. Royal Soc. London Ser. A, 298, 495 (1980).

    Article  CAS  Google Scholar 

  18. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice, 2nd Ed., Butterworth-Heinemann, Boston (1994).

    Google Scholar 

  19. H.-S. Byun, C.-H. Kim and C. Kwak, Korean Chem. Eng. Res., 30, 387 (1992).

    CAS  Google Scholar 

  20. J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azervedo, Molecular Thermodynamics of Fluid Phase Equilibria, 2nd Ed., Prentice-Hall Inc., New Jersey (1987).

    Google Scholar 

  21. J.-U. Lee and G.-Y. Chung, J. Korean Ind. Eng. Chem., 6, 819 (1995).

    CAS  Google Scholar 

  22. H.-S. Byun and K.-P. Yoo, Fluid Phase Equil., 249, 55 (2006).

    Article  CAS  Google Scholar 

  23. J. A. Baker, Aust. J. Chem., 6, 207 (1953).

    Article  Google Scholar 

  24. Aspen Plus® User Guide, Version 12. 1 (2003).

  25. J. W. Ziegler, T. L. Chester, D. P. Innis, S. H. Page and J. G. Dorsey, in Innovations in supercritical fluids. science and technology, K. W. Hutchenson and N. R. Foster Eds., American Chemical Society, Washington, D. C. (1995).

  26. F. P. Lucien and N. R. Foster, J. Supercrit. Fluids, 17, 111 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Hyoung Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, CN., Kang, CH. Phase behavior of arbutin/ethanol/supercritical CO2 at elevated pressures. Korean J. Chem. Eng. 34, 1781–1785 (2017). https://doi.org/10.1007/s11814-017-0087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0087-0

Keywords

Navigation