Skip to main content
Log in

Propagation speed of wrinkled premixed flames within stoichiometric hydrogen-air mixtures under standard temperature and pressure

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To explore the influence mechanism of initial turbulence on propagation speed of wrinkled flames, the turbulent combustion behavior of wrinkled stoichiometric hydrogen premixed flames was studied in a spherical fanstirred closed vessel under standard temperature and pressure. The variations on flame structure were first observed; turbulent flames first were distorted and then became cellular, and both first and second critical flame radii of cellularity declined with a increased rate as turbulent intensity rose. Then, the variations of stretch effects were compared to laminar flame; the global stretch rate on turbulent flame at a same flame size was raised while the enhancement extent was obviously enlarged with the increase of initial turbulent intensity and/or the growth of flame size. Finally, the variation regulations of propagation speed induced by varying turbulent intensity were analyzed; the nexus between propagation speed and initial turbulence was discussed with the considerations of cellularity phenomenon and stretch effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-H. Lee, D.-G. Lee, J.-I. Park and J.-Y. Kim, Korean J. Chem. Eng., 27, 187 (2010).

    Article  CAS  Google Scholar 

  2. K. K. Pant, R. Jain and S. Jain, Korean J. Chem. Eng., 28, 1859 (2011).

    Article  CAS  Google Scholar 

  3. D. L. Cho, H.-N. Kim, M. Lee and E. Cho, Korean J. Chem. Eng., 32, 2519 (2015).

    Article  CAS  Google Scholar 

  4. Z.-Y. Sun and G.-X. Li, Renew. Sust. Energy Rev., 51, 830 (2015).

    Article  Google Scholar 

  5. F. N. Pekhota, V. D. Rusanov and S. P. Malyshenko, Int. J. Hydrogen Energy, 23, 967 (1998).

    Article  CAS  Google Scholar 

  6. Z.-Y. Sun, F.-S. Liu, X.-H. Liu, B.-G. Sun and D.-W. Sun, Int. J. Hydrogen Energy, 37, 664 (2012).

    Article  CAS  Google Scholar 

  7. L. M. Das and V. Dutta, Int. J. Hydrogen Energy, 40, 4280 (2015).

    Article  CAS  Google Scholar 

  8. M. C. Lee, J. Yoon, S. Joo and Y. Yoon, Int. J. Hydrogen Energy, 40, 11032 (2015).

    Article  CAS  Google Scholar 

  9. K. Y. Foo, Renew. Sust. Energy Rev., 51, 1477 (2015).

    Article  Google Scholar 

  10. M. Harada, T. Ichikawa, H. Takagi and H. Uchida, Comp. Hydrogen Energy, 4, 321 (2016).

    Google Scholar 

  11. S. Verhelst and T. Wallner, Prog. Energy Combust. Sci., 35, 490 (2009).

    Article  CAS  Google Scholar 

  12. A. Thomas, Combust. Flame, 65, 291 (1986).

    Article  CAS  Google Scholar 

  13. K. Liu, A. A. Burluka and C. G. W. Sheppard, Fuel, 107, 202 (2013).

    Article  CAS  Google Scholar 

  14. J.-H. Wang, M. Zhang, Y.-L. Xie, Z.-H. Huang, T. Kudo and H. Kobayashi, Exp. Therm. Fluid Sci., 50, 90 (2013).

    Article  CAS  Google Scholar 

  15. J. Vancoillie, G. Sharpe, M. Lawes and S. Verhelst, Fuel, 130, 76 (2014).

    Article  CAS  Google Scholar 

  16. R. C. Aldredge, Combust. Sci. Tech., 178, 1201 (2006).

    Article  CAS  Google Scholar 

  17. D. Bradley, M. Lawes and M. S. Mansour, Combust. Flame, 158, 123 (2011).

    Article  CAS  Google Scholar 

  18. F. Wu, A. Saha, S. Chaudhuri and C. K. Law, Proc. Combust. Inst., 35, 1501 (2015).

    Article  Google Scholar 

  19. H. Wei, D. Gao, L, Zhou,_J. Pan, K. Tao and Z. Pei, Fuel, 180, 157 (2016).

    Article  CAS  Google Scholar 

  20. Z. Wang, E. Motheau and J. Abraham, Proc. Combust. Inst., 36, 3423 (2017).

    Article  CAS  Google Scholar 

  21. M. Izumikawa, T. Mitani and T. Niioka, Combust. Flame, 73, 207 (1988).

    Article  CAS  Google Scholar 

  22. R. C. Aldredge and B. Zuo, Combust. Flame, 127, 2091 (2001).

    Article  CAS  Google Scholar 

  23. O. C. Kwon, G. Rozenchan and C. K. Law, Proc. Combust. Inst., 29, 1775 (2002).

    Article  Google Scholar 

  24. S. Yang, A. Saha, F. Wu and C. K. Law, Combust. Flame, 171, 112 (2016).

    Article  CAS  Google Scholar 

  25. Y. Xie, J. Wang, X. Cai and Z. Huang, Int. J. Hydrogen Energy, 41, 18250 (2016).

    Article  CAS  Google Scholar 

  26. R. Dobashi, S. Kawamura, K. Kuwana and Y. Nakayama, Proc. Combust. Inst., 33, 2295 (2011).

    Article  CAS  Google Scholar 

  27. R. Keppeler and M. Pfitzner, Combust. Theory Modell., 19, 1 (2014).

    Article  Google Scholar 

  28. A. N. Lipatnikov and J. Chomiak, Prog. Energy Combust. Sci., 28, 1 (2002).

    Article  CAS  Google Scholar 

  29. J. F. Driscoll, Prog. Energy Combust. Sci., 48, 857 (2008).

    Google Scholar 

  30. J. Goulier, A. Comandini, F. Halter and N. Chaumeix, Proc. Combust. Inst., 36, 2823 (2016).

    Article  Google Scholar 

  31. P. Brequigny, F. Halter and C. Mounaïm-Rousselle, Exp. Therm. Fluid Sci., 73, 33 (2016).

    Article  CAS  Google Scholar 

  32. Z.-Y. Sun, F.-S. Liu, X.-C. Bao and X.-H. Liu, Int. J. Hydrogen Energy, 37, 7889 (2012).

    Article  CAS  Google Scholar 

  33. Z.-Y. Sun, G.-X. Li, H.-M. Li, Y. Zhai and Z.-H. Zhou, Energies, 7, 4938 (2014).

    Article  CAS  Google Scholar 

  34. M. Zaytsev and V. Bychkov, Phys. Rev. E, 66, 026310 (2002).

    Article  Google Scholar 

  35. D. Bradley, M. Lawes, K. Liu, S. Verhelst and R. Woolley, Combust. Flame, 149, 162 (2007).

    Article  CAS  Google Scholar 

  36. D. Bradley, M. Lawes and M. S. Mansour, Combust. Flame, 156, 1462 (2009).

    Article  CAS  Google Scholar 

  37. Z. Chen, Combust. Flame, 162, 2442 (2015).

    Article  CAS  Google Scholar 

  38. M. Faghih and Z. Chen, Sci. Bull., 61, 1296 (2016).

    Article  Google Scholar 

  39. Z.-Y. Sun and G.-X. Li, Energy, 116, 116 (2016).

    Article  CAS  Google Scholar 

  40. D. Bradley, Proc. R. Soc. A, 357, 3567 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuo-Yu Sun or Guo-Xiu Li.

Additional information

The paper will be reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZY., Li, GX. Propagation speed of wrinkled premixed flames within stoichiometric hydrogen-air mixtures under standard temperature and pressure. Korean J. Chem. Eng. 34, 1846–1857 (2017). https://doi.org/10.1007/s11814-017-0084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0084-3

Keywords

Navigation