Skip to main content

Advertisement

Log in

Efficient pressure swing adsorption for improving H2 recovery in precombustion CO2 capture

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An efficient design for pressure swing adsorption (PSA) operations is introduced for CO2 capture in the pre-combustion process to improve H2 recovery and CO2 purity at a low energy consumption. The proposed PSA sequence increases the H2 recovery by introducing a purge step which uses a recycle of CO2-rich stream and a pressure equalizing step. The H2 recovery from the syngas can be increased over 98% by providing a sufficient purge flow of 48.8% of the initial syngas feeding rate. The bed size (375m3/(kmol CO2/s)) and the energy consumption for the compression of recycled CO2-rich gas (6 kW/(mol CO2/s)) are much smaller than those of other PSA processes that have a CO2 compression system to increase the product purity and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Romano, P. Chiesa and G. Lozza, Int. J. Greenhouse Gas Control, 4, 785 (2010).

    Article  CAS  Google Scholar 

  2. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R. D. Srivastava, Int. J. Greenhouse Gas Control, 2, 9 (2008).

    Article  CAS  Google Scholar 

  3. M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J. Amann and C. Bouallou, Appl. Therm. Eng., 30, 53 (2010).

    Article  CAS  Google Scholar 

  4. S. Vora, L. Brickett, P. Indrikanti, R. Munson, J. Murphy, T. Rife, J. Strock and C. Zaremsky, DOE/NETL advanced carbon dioxide capture R&D program: Technology update (2013).

    Google Scholar 

  5. R. M. Davidson, Pre-combustion capture of CO 2 in IGCC plants, IEA Clean Coal Centre (2011).

    Google Scholar 

  6. O. J. Smith IV and A. W. Westerberg, Chem. Eng. Sci., 46, 2967 (1991).

    Article  CAS  Google Scholar 

  7. O. J. Smith IV and A. W. Westerberg, Chem. Eng. Sci., 47, 4213 (1992).

    Article  CAS  Google Scholar 

  8. S. J. Doong and R. T. Yang, Reactive Polymers, 6, 7 (1987).

    CAS  Google Scholar 

  9. L. Jiang, V. G. Fox and L. T. Biegler, AIChE J., 50, 2904 (2004).

    Article  CAS  Google Scholar 

  10. A. L. Chaffe, G. P. Knowles, Z. Liang, J. Zhang, P. Xiao and P. A. Webley, Int. J. Greenhouse Gas Control, 1, 11 (2007).

    Article  Google Scholar 

  11. J. Zhang, P. A. Webley and P. Xiao, Energy Conversion Management, 49, 346 (2008).

    Article  CAS  Google Scholar 

  12. E. S. Kikkinides, R. T. Yang and S. H. Cho, Ind. Eng. Chem. Res., 32, 2714 (1993).

    Article  CAS  Google Scholar 

  13. K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho and R. T. Yang, Ind. Eng. Chem. Res., 34, 591 (1995).

    Article  CAS  Google Scholar 

  14. S. P. Reynolds, A. D. Ebner and J. A. Ritter, Ind. Eng. Chem. Res., 45, 4278 (2006).

    Article  CAS  Google Scholar 

  15. S. P. Reynolds, A. D. Ebner and J. A. Ritter, Adsorption, 14, 399 (2008).

    Article  CAS  Google Scholar 

  16. C. Chou and C. Chen, Sep. Purif. Technol., 39, 51 (2004).

    Article  CAS  Google Scholar 

  17. V. G. Gomes and K. W. K. Yee, Sep. Purif. Technol., 28, 161 (2002).

    Article  CAS  Google Scholar 

  18. T. Hirose, Proceedings of the 2 nd China-Japan-USA Symposium on Adsorption, 123 (1991).

    Google Scholar 

  19. F. W. Leavitt, U. S. Patent, 5,085,674 (1992).

    Google Scholar 

  20. S. V. Sivakumar and D. P. Rao, Ind. Eng. Chem. Res., 50, 3426 (2011).

    Article  CAS  Google Scholar 

  21. A. Agarwal, L. T. Biegler and S. E. Zitney, AIChE J., 56, 1813 (2010).

    Article  CAS  Google Scholar 

  22. J. Schell, N. Casas, D. Marx and M. Mazzotti, Ind. Eng. Chem. Res., 52, 8311 (2013).

    Article  CAS  Google Scholar 

  23. N. Casas, J. Schell, R. Pini and M. Mazzotti, Adsorption, 18, 143 (2012).

    Article  CAS  Google Scholar 

  24. J. Park and J. W. Lee, Korean J. Chem. Eng., 33, 438 (2016).

    Article  CAS  Google Scholar 

  25. P. C. Wankat, Rate-controlled separations, Elsevier Applied Science (1990).

    Book  Google Scholar 

  26. A. Saberimoghaddam and A. Nozari, Korean J. Chem. Eng., 34(3), 822 (2017).

    Article  CAS  Google Scholar 

  27. B.-K. Na, K.-K. Koo, H.-M. Eum, H. Lee and H. K. Song, Korean J. Chem. Eng., 18, 220 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Kang, R.H. & Lee, J.W. Efficient pressure swing adsorption for improving H2 recovery in precombustion CO2 capture. Korean J. Chem. Eng. 34, 1763–1773 (2017). https://doi.org/10.1007/s11814-017-0080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0080-7

Keywords

Navigation