Skip to main content
Log in

Determination of thermal decomposition kinetics of low grade coal employing thermogravimetric analysis

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The decomposition kinetics of low grade coals was studied and compared with the kinetics of higher grade coals using thermogravimetric analysis. The effect of atmospheres (air, O2 and N2) on coal decomposition kinetics was also investigated. Experiments were carried out under non-isothermal conditions from room temperature to 950 °C at a heating rate of 10 °C/min. Three kinetic models—multiple linear regression equation, unreacted shrinking core and continuous reaction—were used to determine the kinetic parameters of coal decomposition. From the kinetic parameters determined through the multiple linear regression equation, coal type and the atmosphere had an effect on coal decomposition kinetics. Also, there was some variation in the kinetic parameters of coal decomposition determined by the chosen kinetic models. However, the model employing multiple linear regressions yielded consistent results with respect to theoretical background. Under air, the order of the secondary decomposition of coal samples was found to be 0.88, 1.33, 1.69 and 1.52 for samples A, B, C and D, respectively. The order of the secondary decomposition of coal samples when operated under O2 was 1.09, 1.45, 2.36 and 1.81 for samples A, B, C and D, respectively. Under N2, the order of the secondary decomposition of coal samples was 0.72, 0.79, 1.15 and 1.02 for samples A, B, C and D, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sutcu, J. Chinese Institute Chem. Engineers, 38, 245 (2007).

    Article  CAS  Google Scholar 

  2. S. Kern, C. Pfeifer and H. Hofbauer, Energy Technol., 1, 253 (2013).

    Article  CAS  Google Scholar 

  3. M. Hook and K. Aleklett, Int. J. Energy Res., 34, 848 (2010).

    Article  CAS  Google Scholar 

  4. X. Zhou, W. Li, R. Mabon and L. J. Broadbelt, Energy Technol., 4, 1 (2016).

    Article  CAS  Google Scholar 

  5. C. G. Da Silva Filho and F. E. Milioli, Quimica Nova, 31, 98 (2008).

    Article  Google Scholar 

  6. D. B. Anthony and J. B. Howard, AIChE J., 22, 625 (1976).

    Article  CAS  Google Scholar 

  7. B. Hong, X. Wang, Z. Zhou and G. Yu, Energy Technol., 1, 449 (2013).

    Article  CAS  Google Scholar 

  8. Q. Wang, G. Wang, W. Li and B. Chen, Energy Technol., 4, 751 (2016).

    Article  CAS  Google Scholar 

  9. Q. Wang, R. Zhang, Z. Luo, M. Fang and K. Cen, Energy Technol., 4, 543 (2016).

    Article  CAS  Google Scholar 

  10. R. Zhang, Q. Wang, Z. Luo, M. Fang and K. Cen, Energy Technol., 3, 1059 (2015).

    Article  CAS  Google Scholar 

  11. P. Davini, P. Ghetti, L. Bonfanti and G. de Michele, Fuel, 75, 1083 (1996).

    Article  CAS  Google Scholar 

  12. C. Yong, S. Mori and W. P. Pan, Thermochimica Acta, 275, 149 (1996).

    Article  Google Scholar 

  13. J. C. Crelling, E. J. Hippo, B. A. Woerner and D. P. West Jr., Fuel, 71, 151 (1992).

    Article  CAS  Google Scholar 

  14. O. Levenspiel, Chemical Reaction Engineering, Third Edit, John Wiley & Sons, New York, United States (1999).

    Google Scholar 

  15. P. A. Morgan, D. Robertson and J. F. Unsworth, Fuel, 65, 1546 (1986).

    Article  CAS  Google Scholar 

  16. H. B. Vuthaluru, Bioresour. Technol., 92, 187 (2004).

    Article  CAS  Google Scholar 

  17. M. V. Gil, D. Casal, C. Pevida, J. J. Pis and F. Rubiera, Bioresour. Technol., 101, 5601 (2010).

    Article  CAS  Google Scholar 

  18. T. Ozawa, Bulletin of the Chem. Soc. Japan, 38, 1881 (1965).

    Article  CAS  Google Scholar 

  19. L. Heireche and M. Belhadji, Chalcogenide Lett., 4, 23 (2007).

    CAS  Google Scholar 

  20. M. Otero, L. F. Calvo, M. V. Gil, A. I. García and A. Morán, Bioresour. Technol., 99, 6311 (2008).

    Article  CAS  Google Scholar 

  21. S. Biswas, N. Choudhury, P. Sarkar, A. Mukherjee, S. G. Sahu, P. Boral and A. Choudhury, Fuel Processing Technol., 87, 191 (2006).

    Article  CAS  Google Scholar 

  22. N. S. Yuzbasi and N. Selçuk, Fuel Processing Technol., 92, 1101 (2011).

    Article  CAS  Google Scholar 

  23. K. G. P. Nunes and N. R. Marcilio, Brazilian J. Chem. Eng., 32, 211 (2015).

    Article  CAS  Google Scholar 

  24. K. N. Sheeba, J. S. C. Babu and S. Jaisankar, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32, 1837 (2010).

    Article  Google Scholar 

  25. A. E. G. K. G. Mansaray, Energy Sources, 21, 899 (1999).

    Article  CAS  Google Scholar 

  26. A. Kumar, L. Wang, Y. a. Dzenis, D. D. Jones and M. A. Hanna, Biomass Bioenergy, 32, 460 (2008).

    Article  CAS  Google Scholar 

  27. D. K. Park, S. D. Kim, S. H. Lee and J. G. Lee, Bioresour. Technol., 101, 6151 (2010).

    Article  CAS  Google Scholar 

  28. V. J. Costa, V. G. Krioukov and C. R. Maliska, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36, 661 (2014).

    Article  CAS  Google Scholar 

  29. N. P. Cheremisinoff and P. N. Cheremisinoff, Particle Properties and Characterization, Gulf Publishing Company, Houston, Texas (1985).

    Google Scholar 

  30. H. Tolvanen, L. Kokko and R. Raiko, The Factors Controlling Combustion and Gasification Kinetics of Solid Fuels, Pitea, Sweden (2011).

    Google Scholar 

  31. S. A. Channiwala and P. P. Parikh, Fuel, 81, 1051 (2002).

    Article  CAS  Google Scholar 

  32. P. Basu, Biomass Gasification and Pyrolysis Practical Design and Theory, Academic Press, Burlington (2010).

    Google Scholar 

  33. Q. Zhu, Coal Sampling and Analysis Standards, London, United Kingdom (2010).

    Google Scholar 

  34. S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid and M. J. Aris, Bioresour. Technol., 101, 4584 (2010).

    Article  CAS  Google Scholar 

  35. W. A. Kneller, Thermochimica Acta, 108, 357 (1986).

    Article  CAS  Google Scholar 

  36. Y. Lin, X. Ma, X. Ning and Z. Yu, Energy Conversion Manage., 89, 727 (2015).

    Article  CAS  Google Scholar 

  37. A. E. G. K. G. Mansaray, Energy Sources, 21, 453 (1999).

    Article  CAS  Google Scholar 

  38. I. J. Goldfarb, R. McGughan and A. C. Meeks, Kinetic Analysis of Thermogravimetry. Part II. Programmed Temperature, Ohio (1969).

    Google Scholar 

  39. K. G. Mansaray and A. E. Ghaly, Biomass Bioenergy, 17, 19 (1999).

    Article  CAS  Google Scholar 

  40. S. Yagi and D. Kunii, Chem. Eng. Sci., 16, 364 (1961).

    Article  CAS  Google Scholar 

  41. S. Yagi and D. Kunii, Chem. Eng. Sci., 16, 372 (1961).

    Article  CAS  Google Scholar 

  42. S. Yagi and D. Kunii, Chem. Eng. Sci., 16, 380 (1961).

    Article  CAS  Google Scholar 

  43. R. Barranco, A. Rojas, J. Barraza and E. Lester, Fuel, 88, 2335 (2009).

    Article  CAS  Google Scholar 

  44. A. K. Bledzki, A. A. Mamun and J. Volk, Composites Part A: Appl. Sci. Manufacturing, 41, 480 (2010).

    Article  Google Scholar 

  45. K. Chaiwong, T. Kiatsiriroat, N. Vorayos and C. Thararax, Maejo International Journal of Science and Technology, 6, 186 (2012).

    CAS  Google Scholar 

  46. K. G. Mansaray and A. E. Ghaly, Energy Sources, 19, 989 (1997).

    Article  CAS  Google Scholar 

  47. E. S. Hecht, C. R. Shaddix, M. Geier, A. Molina and B. S. Haynes, Combustion and Flame, 159, 3437 (2012).

    Article  CAS  Google Scholar 

  48. J. Yu, A. Tahmasebi, Y. Han, F. Yin and X. Li, Fuel Processing Technol., 106, 9 (2013).

    Article  CAS  Google Scholar 

  49. W. Xia, J. Yang and C. Liang, Powder Technol., 237, 1 (2013).

    Article  CAS  Google Scholar 

  50. M. Sakaguchi, K. Laursen, H. Nakagawa and K. Miura, Fuel Processing Technol., 89, 391 (2008).

    Article  CAS  Google Scholar 

  51. L. Jia and E. J. Anthony, Fuel Processing Technol., 92, 2138 (2011).

    Article  CAS  Google Scholar 

  52. WHO, Air Quality Guidelines for Europe, Copenhagen (2000).

    Google Scholar 

  53. J. Lee, D. Kim, J. Kim, J. Na and S. Lee, Energy, 35, 2814 (2010).

    Article  CAS  Google Scholar 

  54. X. Wang, H. Zhu, X. Wang, H. Liu, F. Wang and G. Yu, Energy Technol., 2, 598 (2014).

    Article  CAS  Google Scholar 

  55. A. A. Khan, W. de Jong, P. J. Jansens and H. Spliethoff, Fuel Processing Technol., 90, 21 (2009).

    Article  CAS  Google Scholar 

  56. M. V. Gil, J. Riaza, L. Álvarez, C. Pevida, J. J. Pis and F. Rubiera, Journal of Thermal Analysis and Calorimetry, 109, 49 (2012).

    Article  CAS  Google Scholar 

  57. P. Parthasarathy, K. N. Sheeba and L. Arockiam, Biomass and Bioenergy, 58, 58 (2013).

    Article  CAS  Google Scholar 

  58. K. G. Mansaray and A. E. Ghaly, Energy Sources, 21, 773 (1999).

    Article  CAS  Google Scholar 

  59. M. N. Nassar, Energy Sources, 21, 131 (1999).

    Article  Google Scholar 

  60. C. Wang, F. Wang, Q. Yang and R. Liang, Biomass and Bioenergy, 33, 50 (2009).

    Article  Google Scholar 

  61. R. Kaitano, Characterisation and Reaction Kinetics of High Ash Chars Derived from Inertinite-Rich Coal, Ph. D Thesis, North-West University, Potchefstroom Campus, South Africa (2007).

    Google Scholar 

  62. Z. Zhang, An Experimental Study of Catalytic Effects on Reaction Kinetics and Producer Gas in Gasification of Coal-Biomass Blend Chars with Steam, M. E. Thesis, University of Canterbury (2011).

    Google Scholar 

  63. M. Güneş and S. Güneş, Energy Sources, 27, 749 (2005).

    Article  Google Scholar 

  64. A. E. Ghaly and K. G. Mansaray, Energy Sources, 21, 867 (1999).

    Article  CAS  Google Scholar 

  65. J. D. Peterson, S. Vyazovkin and C. A. Wight, Macromol. Chem. Phys., 202, 775 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Seok Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, P., Choi, H.S., Hwang, J.G. et al. Determination of thermal decomposition kinetics of low grade coal employing thermogravimetric analysis. Korean J. Chem. Eng. 34, 1678–1692 (2017). https://doi.org/10.1007/s11814-017-0070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0070-9

Keywords

Navigation