Skip to main content
Log in

Enhanced photoactivity of stable colloidal TiO2 nanoparticles prepared in water by nanosecond infrared laser pulses

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A simple laser ablation technique was used to prepare a stable colloidal TiO2 suspension in pure water. A transparent TiO2 aqueous solution was obtained within a few minutes and its photoactivity for the degradation of methylene blue was measured to be higher than that of commercial TiO2 nanoparticles. SEM analysis revealed that the average size of the nanoparticles increased from 20 to 40 nm as the laser power was raised from 0.5 to 2 W. The variation in size, however, had little influence on the resulting photodegradation rate under the given condition. Instead, the photodegradation rate is related to the number of colloidal TiO2 particles in the aqueous solution, which increases proportionally to the ablation time. As the TiO2 particle density increases, however, the photoactivity is measured to be gradually reduced due to the formation of TiO2 aggregates. Thus, the optimum ablation time is 10-30 min under our ablation condition. Our results show that well-dispersed small TiO2 nanoparticles of about a few tens nm can be readily formed by laser ablation within only a few minutes and can be used as highly efficient photocatalysts for photocatalytic remediation of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro and F. Brandi, Phys. Chem. Chem. Phys., 15, 3075 (2013).

    Article  CAS  Google Scholar 

  2. S. Barcikowski and G. Compagnini, Phys. Chem. Chem. Phys., 15, 3022 (2013).

    Article  CAS  Google Scholar 

  3. T. E. Itina, J. Phys. Chem. C, 115, 5044 (2011).

  4. B. C. Lin, P. Shen and S. Y. Chen, J. Phys. Chem. C, 115, 5003 (2011).

    Article  CAS  Google Scholar 

  5. R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio and A. Diaspro, J. Phys. Chem. C, 115, 5102 (2011).

    Article  CAS  Google Scholar 

  6. M. Ikeda, Y. Kusumoto, H. Yang, S. Somekawa, H. Uenjyo, M. Abdulla-Al-Mamun and Y. Horie, Catal. Commun., 9, 1329 (2008).

    Article  CAS  Google Scholar 

  7. H. Wang, N. Koshizaki, L. Li, L. Jia, K. Kawaguchi, X. Li, A. Pyatenko, Z. Swiatkowska-Warkocka, Y. Bando and D. Golberg, Adv. Mater., 23, 1865 (2011).

    Article  CAS  Google Scholar 

  8. K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005).

    Article  CAS  Google Scholar 

  9. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renewable Sustainable Energy Rev., 11, 401 (2007).

    Article  CAS  Google Scholar 

  10. C. Y. Teh, T. Y. Wu and J. C. Juan, Chem. Eng. J., In Press (2017), DOI:10.1016/j.cej.2017.01.001.

    Google Scholar 

  11. A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev., 95, 735 (1995).

    Article  CAS  Google Scholar 

  12. S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 115, 13211 (2011).

    Article  CAS  Google Scholar 

  13. E. C. Landis, K. C. Phillips, E. Mazur and C. M. Friend, J. Appl. Phys., 112, 063108 (2012).

    Article  Google Scholar 

  14. V. Jandová, J. Kupcík, Z. Bastl, J. Šubrt and J. Pola, Solid State Sci., 19, 104 (2013).

    Article  Google Scholar 

  15. A. De Bonis, A. Galasso, N. Ibris, A. Laurita, A. Santagata and R. Teghil, Appl. Surf. Sci., 268, 571 (2013).

    Article  Google Scholar 

  16. C.-N. Huang, J.-S. Bow, Y. Zheng, S.-Y. Chen, N. Ho and P. Shen, Nanoscale Res. Lett., 5, 972 (2010).

    Article  CAS  Google Scholar 

  17. E.-C. Chang, B.-C. Lin, P. Shen and S.-Y. Chen, J. Nanosci. Nanotechnol., 12, 8337 (2012).

    Article  CAS  Google Scholar 

  18. A. Nath, S. S. Laha and A. Khare, Appl. Surf. Sci., 257, 3118 (2011).

    Article  CAS  Google Scholar 

  19. M. Zimbone, M. A. Buccheri, G. Cacciato, R. Sanz, G. Rappazzo, S. Boninelli, R. Reitano, L. Romano, V. Privitera and M. G. Grimaldi, Appl. Catal., B, 165, 487 (2015).

    Article  CAS  Google Scholar 

  20. G. Panomsuwan, A. Watthanaphanit, T. Ishizaki and N. Saito, Phys. Chem. Chem. Phys., 17, 13794 (2015).

    Article  CAS  Google Scholar 

  21. V. Korstgens, S. Proller, T. Buchmann, D. Mosegui Gonzalez, L. Song, Y. Yao, W. Wang, J. Werhahn, G. Santoro, S. V. Roth, H. Iglev, R. Kienberger and P. Muller-Buschbaum, Nanoscale, 7, 2900 (2015).

  22. N. Ohtsu, K. Kodama, K. Kitagawa and K. Wagatsuma, Appl. Surf. Sci., 256, 4522 (2010).

    Article  CAS  Google Scholar 

  23. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen and H. Welling, J. Opt. Soc. Am. B, 14, 2716 (1997).

    Article  CAS  Google Scholar 

  24. R. Kelly and A. Miotello, Appl. Surf. Sci., 96-98, 205 (1996).

    Article  CAS  Google Scholar 

  25. S. Besner, A. V. Kabashin and M. Meunier, Appl. Phys. Lett., 89, 233122 (2006).

    Article  Google Scholar 

  26. X. Yu, B. Kim and Y. K. Kim, ACS Catal., 3, 2479 (2013).

    Article  CAS  Google Scholar 

  27. Y. Wang and N. Herron, J. Phys. Chem., 95, 525 (1991).

    Article  CAS  Google Scholar 

  28. C. N. R. Rao, G. U. Kulkarni, P. J. Thomas and P. P. Edwards, Chem. Eur. J., 8, 28 (2002).

    Article  CAS  Google Scholar 

  29. L. Kavan, T. Stoto, M. Graetzel, D. Fitzmaurice and V. Shklover, J. Phys. Chem., 97, 9493 (1993).

    Article  CAS  Google Scholar 

  30. W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem., 98, 13669 (1994).

    Article  Google Scholar 

  31. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 91, 4305 (1987).

    Article  CAS  Google Scholar 

  32. C. Kormann, D. W. Bahnemann and M. R. Hoffmann, J. Phys. Chem., 92, 5196 (1988).

    Article  CAS  Google Scholar 

  33. E. Joselevich and I. Willner, J. Phys. Chem., 98, 7628 (1994).

    Article  CAS  Google Scholar 

  34. N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem., 99, 16646 (1995).

    Article  CAS  Google Scholar 

  35. L. Brus, J. Phys. Chem., 90, 2555 (1986).

    Article  CAS  Google Scholar 

  36. J. J. Kasinski, L. A. Gomez-Jahn, K. J. Faran, S. M. Gracewski and R. J. D. Miller, J. Chem. Phys., 90, 1253 (1989).

    Article  CAS  Google Scholar 

  37. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss and G. Oskam, Nanotechnology, 19, 145605 (2008).

    Article  CAS  Google Scholar 

  38. C. Y. Teh, T. Y. Wu and J. C. Juan, Catal. Today, 256, 365 (2015).

    Article  CAS  Google Scholar 

  39. A. Calloni, A. Brambilla, G. Berti, G. Bussetti, E. V. Canesi, M. Binda, A. Petrozza, M. Finazzi, F. Ciccacci and L. Duò, Langmuir, 29, 8302 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Kwon Kim or Hyuk Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.K., Lee, G., Kim, Y. et al. Enhanced photoactivity of stable colloidal TiO2 nanoparticles prepared in water by nanosecond infrared laser pulses. Korean J. Chem. Eng. 34, 1822–1826 (2017). https://doi.org/10.1007/s11814-017-0068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0068-3

Keywords

Navigation