Skip to main content
Log in

Development of osmotic repulsive potential using lattice fluid model on ligand capped metallic nanoparticles in gas expanded liquid system

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Not only obtaining nano-sized particles, but controlling mono-dispersed nanoparticles has been regarded as one of the important techniques to employ nano-engineering in many disciplines. To fractionate the nanoparticles synthesized, the gas expanded liquid system (GXLs) has proven to be very useful and effective. Many researchers considered the total interaction energy model comprised as a summation of van der Waals attractive potential, the elastic repulsive potential, and the osmotic repulsive potential as a promising thermodynamic model. In previous models, osmotic contribution was modeled based on the rigid lattice model. Consequently, it was impossible to consider the effect of pressure on GXL operation because osmotic repulsive potential based on rigid lattice modal intrinsically could not reflect the pressure influence. We applied a lattice fluid model in the presence of holes to derive better osmotic repulsive potential. Thus, the effect of pressure on nanoparticle synthesis in GXL process has been successfully investigated. A nanoparticle size predicted using this improved model is in a better agreement to that obtained experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Subramaniam, Coordination Chem. Rev., 254, 1843 (2010).

    Article  CAS  Google Scholar 

  2. M.-T. Golmakania, J. A. Mendiolab, K. Rezaeic and E. Ibánez, J. Supercritical Fluids, 62, 109 (2012).

    Article  Google Scholar 

  3. Y.-T. Shieh and H.-S. Yang, J. Supercritical Fluids, 33, 183 (2005).

    Article  CAS  Google Scholar 

  4. M. C. McLeod, M. Anand, C. L. Kitchens and C. B. Roberts, Nano Lett., 5, 461 (2005).

    Article  CAS  Google Scholar 

  5. S. R. Saunders and C. B. Roberts, Current Opinion in Chem. Eng., 1, 91 (2012).

    Article  CAS  Google Scholar 

  6. C. L. Kitchens and M. C. McLeod, J. Phys. Chem. B, 107, 11331 (2003).

    Article  CAS  Google Scholar 

  7. P. S. Shah, J. D. Holmes, K. P. Johnston and B. A. Korgel, J. American Chem. Soc., 122, 4245 (2000).

    Article  CAS  Google Scholar 

  8. C. L. Kitchens and C. B. Roberts, Ind. Eng. Chem. Res., 43, 6070 (2004).

    Article  CAS  Google Scholar 

  9. P. S. Shah, J. D. Holmes, K. P. Johnston and B. A. Korgel, J. Phys. Chem. B, 106, 2545 (2002).

    Article  CAS  Google Scholar 

  10. S. Y. Lee, M. H. Lee, Y. Park and S.-S. You, Ind. Eng. Chem. Res., 52, 1705 (2013).

    Article  CAS  Google Scholar 

  11. M. Anand, S.-S. You, K. M. Hurst, S. R. Saunders, C. L. Kitchens, W. R. Ashurst and C. B. Roberts, Ind. Eng. Chem. Res., 47, 553 (2008).

    Article  CAS  Google Scholar 

  12. S. K. Kumar, U. W. Suter and R. C. Reid, Ind. Eng. Chem. Res., 26, 2532 (1987).

    Article  CAS  Google Scholar 

  13. S.-S. You, K.-P. Yoo and C. S. Lee, Fluid Phase Equilib., 93, 193 (1994).

    Article  CAS  Google Scholar 

  14. K. P. Yoo, H. Kim and C. S. Lee, Korean J. Chem. Eng., 12, 277 (1995).

    Article  CAS  Google Scholar 

  15. C. H. Kwon, C. H. Lee and J. W. Kang, Korean J. Chem. Eng., 27, 278 (2010).

    Article  CAS  Google Scholar 

  16. D. H. Napper, Polymeric Stabilization of Colloidal Dispersions, Academic Press, New York (1983).

    Google Scholar 

  17. G. V. White and C. L. Kitchens, J. Phys. Chem. C, 114, 16285 (2010).

    Article  Google Scholar 

  18. M. Anand, M. C. McLeod, P. W. Bell and C. B. Roberts, J. Phys. Chem. B, 109, 22852 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Sik You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, S.R., You, SS. Development of osmotic repulsive potential using lattice fluid model on ligand capped metallic nanoparticles in gas expanded liquid system. Korean J. Chem. Eng. 34, 1834–1839 (2017). https://doi.org/10.1007/s11814-017-0058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0058-5

Keywords

Navigation