Skip to main content
Log in

Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We studied the ultrasonic effect on the leaching of copper from poorly soluble chalcopyrite (CuFeS2) mineral in aqueous FeCl3 solution. The leaching experiment employed two methods, basic leaching and ultrasonic-assisted leaching, and was conducted under the optimized experimental conditions: a slurry density of 20 g/L in 0.1M FeCl3 reactant in a solution of 0.1M HCl, with an agitation speed of 500 rpm and in the temperature range of 50 to 99 °C. The maximum yield obtained from the optimized basic leaching was 77%, and ultrasonic-assisted leaching increased the maximum copper recovery to 87% under the same conditions of basic leaching. In terms of the leaching mechanism, the overall reaction rate of basic leaching is determined by the diffusion of both the product and ash layers based on a shrinking core model with a constant spherical particle; however, in the case of ultrasonic-assisted leaching, the leaching rate is determined by diffusion of the ash layer only by the removal of sulfur adsorbed on the surface of chalcopyrite mineral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, N. Kawashima, J. Li, A. P. Chandra and A.R. Gerson, Adv. Colloid Interface Sci., 197, 1 (2013).

    Google Scholar 

  2. Y. J. Xian, S.M. Wen, J. S. Deng, J. Liu and Q. Nie, Canadian Metallurgical Quarterly, 51, 133 (2012).

    Article  CAS  Google Scholar 

  3. R.P. Hackl, D.B. Dreisinger, E. Peters and J.A. King, Hydrometallurgy, 39, 25 (1995).

    Article  CAS  Google Scholar 

  4. E. M. Cordoba, J.A. Munoz, M. L. Blazquez, F. Gonzalez and A. Ballester, Minerals Engineering, 22, 229 (2009).

    Article  CAS  Google Scholar 

  5. M. B. Stott, H.R. Watling, P.D. Franzmann and D. Sutton, Minerals Engineering, 13, 1117 (2000).

    Article  CAS  Google Scholar 

  6. A. Parker, C. Klauber, A. Kougianos, H.R. Watling and W. van Bronswijk, Hydrometallurgy, 71, 265 (2003).

    Article  CAS  Google Scholar 

  7. G. Viramontes-Gamboa, M. M. Pena-Gomar and D.G. Dixon, Hydrometallurgy, 105, 140 (2010).

    Article  CAS  Google Scholar 

  8. M. F. C. Carneiro and V.A. Leao, Hydrometallurgy, 87, 73 (2007).

    Article  CAS  Google Scholar 

  9. T. Havlik, M. Skrobian, P. Balaz and R. Kammel, Int. J. Miner. Process., 43, 61 (1995).

    Article  CAS  Google Scholar 

  10. T. Havlik and R. Kammel, Minerals Engineering, 8, 1125 (1995).

    Article  CAS  Google Scholar 

  11. M. Al-Harahsheh, S. Kingman and A. Al-Harahsheh, Hydrometallurgy, 91, 89 (2008).

    Article  CAS  Google Scholar 

  12. M. Bonan, J. M. Demarthe, H. Renon and F. Baratin, Metallurgical Transactions B, 1. B, 269 (1981).

    Google Scholar 

  13. M. Skrobian, T. Havlik and M. Ukasik, Hydrometallurgy, 77, 109 (2005).

    Article  CAS  Google Scholar 

  14. T. Hirato, H. Majima and Y. Awakura, Metallurgical Transactions B, 1. B, 31 (1987).

    Google Scholar 

  15. S. Aydogan, G. Ucar and M. Canbazoglu, Hydrometallurgy, 81, 45 (2006).

    Article  CAS  Google Scholar 

  16. M.M. Antonijevic, Z.D. Jankovic and M.D. Dimitrijevic, Hydrometallurgy, 71, 329 (2004).

    Article  CAS  Google Scholar 

  17. T. Havlik, M. Laubertova, A. Miskufova, J. Kondas and F. Vranka, Hydrometallurgy, 77, 51 (2005).

    Article  CAS  Google Scholar 

  18. Y.C. Guan and K.N. Han, Metallurgical and Material Transactions B, 2. B, 979 (1997).

    Google Scholar 

  19. X. Juanqin, L. Xi, D. Yewei, M. Weibo, W. Yujie and L. Jingxian, Chinese J. Chem. Eng., 18, 948 (2010).

    Article  Google Scholar 

  20. S. G. Chen, Sanghai Nonferrous Metals, 3, 142 (2003).

    Google Scholar 

  21. R.N. Kar, L. B. Sulka and K.M. Swamy, Metallurgical and Materials Transactions B, 27, 351 (1996).

    Article  Google Scholar 

  22. B. Pesic and T.L. Zhou, Metallurgical Transactions B, 2. B, 13 (1992).

    Google Scholar 

  23. O. Levenspiel, Chemical Reaction Engineering, 3rd Ed., Wiley, NewYork (2003).

    Google Scholar 

  24. L.D. Schmidt, The Engineering of Chemical Reactions, 2nd Ed., Oxford University Press (2005).

    Google Scholar 

  25. M. Avrami, J. Chem. Phys., 7, 1103 (1939).

    Article  CAS  Google Scholar 

  26. C. F. Dickinson and G.R. Heal, Thermochim. Acta, 340, 89 (1999).

    Article  Google Scholar 

  27. J. J.M. Órfão and F. G. Martins, Thermochim. Acta, 390, 195 (2002).

    Article  Google Scholar 

  28. T.N. Akinlua and T.R. Ajayi, Fuel, 87, 1469 (2008).

    Article  CAS  Google Scholar 

  29. M. L. O’Malley and K. C. Liddell, Metallurgical Transactions B, 1. B, 505 (1987).

    Google Scholar 

  30. D. Maurice and J. A. Hawk, Hydrometallurgy, 51, 371 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Joon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, HS., Kim, CJ., Chung, K.W. et al. Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite. Korean J. Chem. Eng. 34, 1748–1755 (2017). https://doi.org/10.1007/s11814-017-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0053-x

Keywords

Navigation