Skip to main content

Advertisement

Log in

Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of Ca/S molar ratio, catalyst type, catalyst dosage, temperature on desulfurization and denitrification efficiency were investigated in the coal-powder combustion with corn cobs as biomass. The thermal characteristics of Shanxi coal and corn cob blends with V-TiO2 were evaluated by thermogravimetric analyzer. The catalytic mechanisms of V-TiO2 on combustion, desulfurization and denitrification were discussed, suggesting that the mechanisms are in good agreement with the experimental data. The results show that the control parameters of the ideal desulfurization and denitrification efficiency should follow that the dosage of V-TiO2 catalyst is 8% with a Ca/S ratio of 2.3 at a treatment temperature 850 °C. Meanwhile, the combustion efficiency could be effectively improved with the mixture of corn cob and V-TiO2. The thermal characteristics of coal char and corn cob char blends with V-TiO2 were evaluated using thermogravimetric analysis and derivative thermogravimetry methods to discuss the heterogeneous NO reduction mechanisms. The results show that the biomass chars were more active than coal chars in reducing NO, and the specific surface area of the chars was increased with V-TiO2, which indicates that V-TiO2 exhibits significant influence on catalytic combustion, desulfurization and denitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Y. Zhang, F. Hao, H. S. Chen and D. N. Fang, J. Electrochem. Soc., 161(14), A2243 (2014).

    Article  CAS  Google Scholar 

  2. L. Yang, X. Zhang, Y. Li, F. Hao, H. Chen, M. Yang and D. Fang, Electrochim. Acta, 155, 272 (2015).

    Article  CAS  Google Scholar 

  3. M. V. Gil, D. Casal, C. Pevida, J. J. Pis and F. Rubiera, Bioresour. Technol., 101, 5601 (2010).

    Article  CAS  Google Scholar 

  4. E. Lester, M. Gong and A. Thompson, J. Anal. Appl. Pyrol., 80, 111 (2007).

    Article  CAS  Google Scholar 

  5. S. G. Sahu, P. Sarkar, N. Chakraborty and A. K. Adak, Fuel Process. Technol., 91, 369 (2010).

    Article  CAS  Google Scholar 

  6. H. P. Wan, Y. H. Chang, W. C. Chien, H. T. Lee and C. C. Huang, Fuel, 87, 761 (2008).

    Article  CAS  Google Scholar 

  7. A. Kazagic and I. Smajevic, Energy, 32, 2006 (2007).

    Article  CAS  Google Scholar 

  8. S. Ahn, G. Choi and D. Kim, Biomass Bioenerg, 71, 144 (2014).

    Article  CAS  Google Scholar 

  9. X. Liu, M. Chen and Y. Wei, Fuel, 143, 577 (2015).

    Article  CAS  Google Scholar 

  10. J. Riaza, L. Álvarez,_M. V. Gil, C. Pevida, J. J. Pis and F. Rubiera, Energy Procedia, 37, 1405 (2013).

    Article  CAS  Google Scholar 

  11. S. S. Daood, M. T. Javed, B. M. Gibbs and W. Nimmo, Fuel, 105, 283 (2013).

    Article  CAS  Google Scholar 

  12. J. J. Xie, X. M. Yang, L. Zhang, T. L. Ding, W. L. Song and W. G. Lin, J. Environ. Sci., 19, 109 (2007).

    Article  CAS  Google Scholar 

  13. H. Liu, J. R. Qiu and X. W. Dong, J. Eng. Therm. Energy Power, 17, 451 (2002).

    CAS  Google Scholar 

  14. S. S. Daood, G. Ord, T. Wilkinson and W. Nimmo, Fuel, 134, 293 (2014).

    Article  CAS  Google Scholar 

  15. Y. Yuan, J. Zhang, H. Li, Y. Li, Y. Zhao and C. Zheng, Chem. Eng. J., 192, 21 (2012).

    Article  CAS  Google Scholar 

  16. Y. Zhao, J. Han, Y. Shao and Y. Feng, Environ. Technol., 14, 1555 (2009).

    Article  Google Scholar 

  17. S. Q. Wang, Y. Zhao and D. D. Li, J. Eng. Therm. Energy Power, 23, 50 (2008).

    Google Scholar 

  18. S. Q. Wang, Y. Zhao, Q. Tan and P. Y. Xu, Environ. Sci., 29, 518 (2008).

    CAS  Google Scholar 

  19. S. Q. Wang and H. Y. Kong, J. N. China Electr. Power Univ., 3, 79 (2008).

    Google Scholar 

  20. X. Zhang, L. Yang, F. Hao, H. Chen, M. Yang and D. Fang, Nanomaterials, 5(4), 1985 (2015).

    Article  CAS  Google Scholar 

  21. L. Li, C. Y. Liu and Y. Liu, Mater. Chem. Phys., 113, 551 (2009).

    Article  CAS  Google Scholar 

  22. S. W. Ding, L. Li, X. W. Xu and L. Wu, J. N. China Electr. Power Univ., 6, 88 (2007).

    Google Scholar 

  23. L. Zhang, S. H. Zhang and X. H. Wang, Power Syst. Eng., 23, 127 (2007).

    Google Scholar 

  24. S. Q. Wang, C. R. Su and Y. Zhao, J. N. China Electr. Power Univ., 5, 89 (2011).

    CAS  Google Scholar 

  25. L. Dong, S. Gao, W. Song and G. Xu, Fuel Process. Technol., 88, 707 (2007).

    Article  CAS  Google Scholar 

  26. J. Z. Liu, Z. G. Feng, B. S. Zhang, J. H. Zhou and K. F. Cen, J. Power Eng., 26, 121 (2006).

    CAS  Google Scholar 

  27. G. Zheng and J. A. Koziński, Fuel, 79, 181 (2000).

    Article  CAS  Google Scholar 

  28. J. Zhang, J. Li, Z. Hu, S. Yin, H. Zuo and B. Su, Acta Energy Solaris Sinica, 10, 1847 (2013).

    Google Scholar 

  29. S. Q. Wang, Y. Zhao, P. P. Zhang and Y. D. Liu, Chem. Eng. Res. Des., 89, 1061 (2011).

    Article  CAS  Google Scholar 

  30. Y. Zhao, S. Q. Wang, Y. Shen and X. Lu, Energy, 56, 25 (2013).

    Article  CAS  Google Scholar 

  31. L. Dong, S. Gao, W. Song and G. Xu, Fuel Process. Technol., 88, 707 (2007).

    Article  CAS  Google Scholar 

  32. B. J. Zhong, W. W. Shi and W. B. Fu, Fuel Process. Technol., 79, 93 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Qin Wang or Wei-Liang Cheng.

Additional information

The paper will be reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SQ., Liu, MZ., Sun, LL. et al. Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal. Korean J. Chem. Eng. 34, 1882–1888 (2017). https://doi.org/10.1007/s11814-017-0051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0051-z

Keywords

Navigation