Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 5, pp 1541–1553 | Cite as

Three-dimensional CFD study of conical spouted beds containing heavy particles: Design parameters

  • Naimeh Setarehshenas
  • Seyyed Hossein HosseiniEmail author
  • Mohsen Nasr Esfahany
  • Goodarz Ahmadi
Fluidization, Particle Technology

Abstract

The flow behavior of conical spouted beds containing heavy particles that occurs in chemical vapor deposition (CVD) was investigated using the computational fluid dynamics (CFD) approach. A fully Eulerian description of solid and gas phases flows in 3D was used in these simulations. The hydrodynamics parameters including particle velocity, solid flux, and solid volume fraction profiles at different bed levels were evaluated, and the overall behavior of solid particles in the beds was studied. The results showed close agreement with the corresponding experimental data. The effects of cone angle, static bed height, and cone bottom diameter on the hydrodynamic behavior of heavy particles were analyzed and the results were presented. In addition, the effects of flat wall of semi-conical spouted bed (half-column) on the CFD results and performance of the spouted bed were investigated. The hydrodynamic results for the full bed were quite different from those for the half bed geometries. It was also found that the conical spouted bed with the angle of 45° leads to the roughly stable spouting compared to the 30° angle bed. The CFD model also showed that the conical-cylindrical spouted beds operating with heavy particles has the potential for periodic occurrence of choking in the spout zone.

Keywords

CFD Conical Spouted Bed Heavy Particles Hydrodynamics Design Parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. E. Gishler, Can. J. Chem. Eng., 61, 267 (1983).CrossRefGoogle Scholar
  2. 2.
    A. Kmiec and R.G. Szafran, Kinetics of Drying of Microspherical Particles in a Spouted Bed Dryer with a Draft Tube, In Proceedings of the 12th International Drying Symposium (IDS 2000), Elsevier Science B.V.: Amsterdam (2000).Google Scholar
  3. 3.
    D. J. E. Harvie, T.A.G. Langrish and D. F.A. Fletcher, Trans. Inst. Chem. Eng., 80, 163 (2002).Google Scholar
  4. 4.
    H. Ichikawa, M. Arimoto and Y. Fukumori, Powder Technol., 130, 189 (2003).CrossRefGoogle Scholar
  5. 5.
    S. I. Al-Mayman and S. M. Al-Zahrani, Fuel Process Technol., 80, 169 (2003).CrossRefGoogle Scholar
  6. 6.
    M. Khoshnoodi and F. J. Weinberg, Combust. Flame, 33, 11 (1978).CrossRefGoogle Scholar
  7. 7.
    S.R. A. Kersten, W. Prins, B. van der Drift and W. P. M. van Swaaij, Chem. Eng. Sci., 58, 725 (2003).CrossRefGoogle Scholar
  8. 8.
    C. Luo, K. Aoki, S. Uemiya and T. Kojima, Fuel Process Technol., 55, 193 (1998).CrossRefGoogle Scholar
  9. 9.
    G. Lopez, J. Alvarez, M. Amutio, A. Arregi, J. Bilbao and M. Olazar, Energy, 107, 493 (2016).CrossRefGoogle Scholar
  10. 10.
    G. Kulah, S. Sari and M. Koksal, Ind. Eng. Chem. Res., 55, 3131 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Liu, W. Zhong, X. Jiang and B. Jin, AIChE J., 61, 58 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Qian, Y. Lu, W. Zhong, X. Chen, B. Ren and B. Jin, Can. J. Chem. Eng., 91, 1793 (2013).Google Scholar
  13. 13.
    V. S. Sutkar, N. G. Deen, A.V. Patil, F. E. A. J. Peters, V. Salikov, S. Heinrich, S. Antonyuk and J. A. M. Kuipers, AIChE J., 61, 1146 (2015).CrossRefGoogle Scholar
  14. 14.
    X. Chen, B. Ren, Y. Chen, W. Zhong, D. Chen, Y. Lu and B. Jin, Can. J. Chem. Eng., 91, 1762 (2013).Google Scholar
  15. 15.
    J. F. Saldarriaga, R. Aguado, H. Altzibar, A. Atxutegi, J. Bilbao and M. Olazar, J. Taiwan Inst. Chem. Eng., 60, 509 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Azizi, S. H. Hosseini, M. Moraveji and G. Ahmadi, Particuology, 8, 415 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Fattahi, S. H. Hosseini and G. Ahmadi, Appl. Therm. Eng., 105, 385 (2016).CrossRefGoogle Scholar
  18. 18.
    S. H. Hosseini, G. Ahmadi and M. Olazar, Powder Technol., 246, 303 (2013).CrossRefGoogle Scholar
  19. 19.
    S. H. Hosseini, G. Ahmadi and M. Olazar, J. Taiwan Inst. Chem. Eng., 45, 2140 (2014).CrossRefGoogle Scholar
  20. 20.
    S. H. Hosseini, M. Fattahi and G. Ahmadi, J. Taiwan Inst. Chem. Eng., 58, 107 (2016).CrossRefGoogle Scholar
  21. 21.
    S. H. Hosseini, Prog. Comput. Fluid Dyn., 16, 78 (2016).CrossRefGoogle Scholar
  22. 22.
    S.H. Hosseini, G. Ahmadi, B. S. Razavi and W. Zhong, Energy Fuels, 24, 6086 (2010).CrossRefGoogle Scholar
  23. 23.
    S.H. Hosseini, M. Fattahi and G. Ahmadi, Powder Technol., 279, 301 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Moradi, A. Yeganeh and M. Salimi, Appl. Math. Model, 37, 1851 (2013).CrossRefGoogle Scholar
  25. 25.
    M. J. San Jose, M. Olazar, S. Alvarez, A. Morales and J. Bilbao, Ind. Eng. Chem. Res., 44, 193 (2005).CrossRefGoogle Scholar
  26. 26.
    M. J. San Jose, S. Alvarez, A. Morales, M. Olazar and J. Bilbao, Chem. Eng. Res. Des., 84, 487 (2006).CrossRefGoogle Scholar
  27. 27.
    J. Zhou and D. D. Bruns, Can. J. Chem. Eng., 90, 558 (2012).CrossRefGoogle Scholar
  28. 28.
    S. Pannala, C. S. Daw, C. E. A. Finney, D. Boyalakuntla, M. Syamlal and T. J. O’Brien, Chem. Vapor Depos., 13, 481 (2007).CrossRefGoogle Scholar
  29. 29.
    S. Ş. Lüle, U. Colak, M. Koksal and G. Kulah, Chem. Vap. Depos., 21, 1 (2015).CrossRefGoogle Scholar
  30. 30.
    N. Setarehshenas, S. H. Hosseini, M. Nasr Esfahany and G. Ahmadi, J. Taiwan Inst. Chem. Eng., 64, 146 (2016).CrossRefGoogle Scholar
  31. 31.
    D.G. Schaeffer, J. Differ. Equat., 66, 19 (1987).CrossRefGoogle Scholar
  32. 32.
    C.K.K. Lun, S.B. Savage, D. J. Jeffrey and N. Chepurniy, J. Fluid Mech., 140, 223 (1984).CrossRefGoogle Scholar
  33. 33.
    L. Huilin, D. Gidaspow, J. Bouillard and L. Wentie, Chem. Eng. J., 95, 1 (2003).CrossRefGoogle Scholar
  34. 34.
    P.C. Johnson and R. Jackson, J. Fluid Mech., 176, 67 (1987).CrossRefGoogle Scholar
  35. 35.
    S.H. Hosseini, R. Rahimi, M. Zivdar and A. Samimi, Korean J. Chem. Eng., 26, 1405 (2009).CrossRefGoogle Scholar
  36. 36.
    R. Bettega, C. A. da Rosa, R. G. Corrêa and J.T. Freire, Ind. Eng. Chem. Res., 48, 11181 (2009).CrossRefGoogle Scholar
  37. 37.
    Y. Behjat, S. Shahhosseini and M. Ahmadi Marvast, Int. Commun. Heat Mass, 37, 935 (2010).CrossRefGoogle Scholar
  38. 38.
    M. J. San Jose, M. Olazar, S. Alvarez and J. Bilbao, Ind. Eng. Chem. Res., 37, 2553 (1998).CrossRefGoogle Scholar
  39. 39.
    W. Du, X. Bao, J. Xu and W. Wei, Chem. Eng. Sci., 61, 1401 (2006).CrossRefGoogle Scholar
  40. 40.
    S.H. Hosseini, M. Karami, M. Olazar, R. Safabakhsh and M. Rahmati, Ind. Eng. Chem. Res., 53, 12639 (2014).CrossRefGoogle Scholar
  41. 41.
    K. B. Mathur and P.E. Gishler, AIChE J., 1, 157 (1955).CrossRefGoogle Scholar
  42. 42.
    M. Olazar, M. J. San José, A.T. Aguayo, J. M. Arandes and J. Bilbao, Chem. Eng. J. Biochem. Eng., 55, 27 (1994).CrossRefGoogle Scholar
  43. 43.
    M. Olazar, M. J. San Jose, S. A. Morales and J. Bilbao, Ind. Eng. Chem. Res., 37, 4520 (1998).CrossRefGoogle Scholar
  44. 44.
    W. Sobieski, Dry Technol., 26, 1438 (2008).CrossRefGoogle Scholar
  45. 45.
    R. Béttega, R. G. Corrêa and J.T. Freire, Study of the Scale-Up Relations for Spouted Beds using CFD, 19th Int. Cong. Mech. Eng., Brasília DF 5-9 (2007).Google Scholar
  46. 46.
    Y. L. He, Hydrodynamic and Scale-up Studies of Spouted Beds, University of British Columbia, Ph.D. Thesis (1995).Google Scholar
  47. 47.
    L. Huilin, H. Yurong, L. Wentie, D. Jianmin, D. Gidaspow and J. Bouillard, Chem. Eng. Sci., 59, 865 (2004).CrossRefGoogle Scholar
  48. 48.
    S. Sari, A. Polat, D. Zaglanmis, G. Kulah and M. Koksal, Hydrodynamics of Conical Spouted Beds with High Density Particles, Proceedings of 10th International Conference on Circulating Fluidized Beds and Fluidization Technology, Sun River, Idaho, U.S.A. (2011).Google Scholar
  49. 49.
    S. Sari, G. Kulah and M. Koksal, Exp. Therm. Fluid Sci., 40, 132 (2012).CrossRefGoogle Scholar
  50. 50.
    D.C. Sau and K. C. Biswal, Appl. Math. Model, 35, 2265 (2011).CrossRefGoogle Scholar
  51. 51.
    S. Liyan, X. Weiguo, L. Guodong, S. Dan, L. Huilin, T. Yanjia and L. Dan, Chem. Eng. Sci., 84, 170 (2012).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Naimeh Setarehshenas
    • 1
  • Seyyed Hossein Hosseini
    • 2
    Email author
  • Mohsen Nasr Esfahany
    • 3
  • Goodarz Ahmadi
    • 4
  1. 1.Department of Chemical EngineeringUniversity of Sistan and BaluchestanZahedanIran
  2. 2.Department of Chemical EngineeringIlam UniversityIlamIran
  3. 3.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  4. 4.Department of Mechanical and Aeronautical EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations