Skip to main content

Effects of reservoir temperature and water salinity on the swelling ratio performance of enhanced preformed particle gels

Abstract

Preformed particle gel (PPG) treatment is now one of the most effective remediation techniques for conformance controlling and selective plugging of high-water flow conduits in mature water-flooded oil reservoirs. Recognizing the intrinsic properties of PPGs, e.g., the swelling ratio, in reservoir condition is of prime importance to the optimization of their performance as plugging agents. In this study, the classical and three-level full factorial experimental design methods are joined with laboratory measurements to investigate the swelling ratio dependency of a new class of enhanced PPGs at different brine salinities and reservoir temperatures. To cover severe reservoir conditions, the reservoir temperature from 298 to 418 K and brine salinity from 0 to 225,000 ppm were considered during the laboratory measurements. The results show that the swelling ratio decreases by rising water salinity. Moreover, the swelling ratio rises by increasing reservoir temperature up to 380 K and then starts to decrease. The factor screening illustrates that the swelling ratio is more dependent on salinity than the reservoir temperature in low salinity solutions, while is less dependent on salinity in high salinity solutions. In addition, a precise mathematical model was developed to predict the swelling ratio of PPGs in a wide range of salinities and temperatures. The results of this study present a practical insight into the swelling-related behavior of the PPGs at reservoir conditions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.M. Almohsin, B. Bai, A.H. Imqam, M. Wei, W. Kang, M. Delshad and K. Sepehrnoori, Transport of nanogel through porous media and its resistance to water flow, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers (2014).

    Google Scholar 

  2. 2.

    A. Imqam, B. Bai, M. Al Ramadan, M. Wei, M. Delshad and K. Sepehrnoori, SPE J., 20, 1083 (2014).

    Google Scholar 

  3. 3.

    C. Durán-Valencia, B. Bai, H. Reyes, R. Fajardo-López, F. Barragán-Aroche and S. López-Ramírez, Polymer J., 46, 277 (2014).

    Article  Google Scholar 

  4. 4.

    M.O. Elsharafi and B. Bai, Effect of strong preformed particle gel on unswept oil zones/areas during conformance control treatments, EAGE Annual Conference & Exhibition incorporating SPE Europec, Society of Petroleum Engineers (2013).

    Google Scholar 

  5. 5.

    A. Goudarzi, H. Zhang, A. Varavei, P. Taksaudom, Y. Hu, M. Delshad, B. Bai and K. Sepehrnoori, Fuel, 140, 502 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    N. Hajilary, M.V. Sefti, A., Shahmohammadi, A.D. Koohi and A. Mohajeri, Can. J. Chem. Eng., 93, 1957 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    A. Imqam and B. Bai, Fuel, 148, 178 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Q. Sang, Y. Li, L. Yu, Z. Li and M. Dong, Fuel, 136, 295 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    O. Okay, General properties of hydrogels, Hydrogel sensors and actuators: Engineering and technology, G. Gerlach and K.-F. Arndt, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1 (2010).

  10. 10.

    C. Özeroglu and A. Birdal, eXPRESS Polymer Lett., 3, 168 (2009).

    Article  Google Scholar 

  11. 11.

    H.R. Saghafi, M. A. Emadi, A. Farasat, M. Arabloo and A. Naderifar, Chem. Eng. Res. Design, 112, 175 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    B. Bai, J. Zhou, Y. Liu and P. Tongwa, Thermo-dissoluble polymer for in-depth mobility control, International Petroleum Technology Conference (2013).

    Google Scholar 

  13. 13.

    H.R. Saghafi, A. Naderifar, S. Gerami and M.A. Emadi, Can. J. Chem. Eng., 94, 1880 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    T. S. Young, J. A. Hunt, D.W. Green and G. P. Willhite, SPE Reservoir Engineering, 4, 348 (1989).

    CAS  Article  Google Scholar 

  15. 15.

    T.N. Tu and B. Wisup, Investigating the effect of polymer gels swelling phenomenon under reservoir conditions on polymer conformance control process, International Petroleum Technology Conference (2011).

    Google Scholar 

  16. 16.

    B. Brattekås, A. Graue and R. Seright, SPE Reservoir Evaluation & Engineering, 19, 331 (2015).

    Google Scholar 

  17. 17.

    F.A. Muhammed, B. Bai and A. Al Brahim, A simple technique to determine the strength of millimeter-sized particle gel, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers (2014).

    Google Scholar 

  18. 18.

    B. Bai, F. Huang, Y. Liu, R. S. Seright and Y. Wang, Case study on prefromed particle gel for in-depth fluid diversion, SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers (2008).

    Google Scholar 

  19. 19.

    A. Mousavi Moghadam, M. Vafaie Sefti, M. Baghban Salehi and A. Dadvand Koohi, J. Petroleum Exploration and Production Technol., 2, 85 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    P. J. Molloy, M. J. Smith and M. J. Cowling, Mater. Design, 21, 169 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    H.R. Saghafi, A. Naderifar, S. Gerami and A. Farasat, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35, 83 (2016).

    Google Scholar 

  22. 22.

    A. Imqam, B. Bai, M. Wei, H. Elue and F.A. Muhammed, SPE Production & Operations, 31, 247 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    P. Tongwa and B. Bai, J. Petroleum Sci. Eng., 124, 35 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    B. Bai, L. Li, Y. Liu, H. Liu, Z. Wang and C. You, SPE Reservoir Evaluation Eng., 10, 415 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    B. Bai, Y. Liu, J.-P. Coste and L. Li, SPE Reservoir Evaluation & Engineering, 10, 176 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    X. Zhang, X. Wang, L. Li, S. Zhang and R. Wu, React. Funct. Polymers, 87, 15 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    A. Jmp and M. Proust, Modeling and multivariate methods, SAS Institute (2012).

    Google Scholar 

  28. 28.

    C. Croarkin and P. Tobias, Nist/sematech e-handbook of statistical methods, NIST/SEMATECH, July. Available online: http://www.itl.nist.gov/div898/handbook (2006).

    Google Scholar 

  29. 29.

    M. Proust and A. Jmp, Design of experiments guide, SAS Institute, Cary, NC, USA (2009).

    Google Scholar 

  30. 30.

    E.M. Ahmed, J. Adv. Res., 6, 105 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    A.M. Mathur, S. K. Moorjani and A. B. Scranton, Journal of Macromolecular Science, Part C, 36, 405 (1996).

    Article  Google Scholar 

  32. 32.

    G.R. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh and M. J. Zohuriaan, European Polymer J., 40, 1399 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    E. Vasheghani-Farahani, J. H. Vera, D. G. Cooper and M. E. Weber, Ind. Eng. Chem. Res., 29, 554 (1990).

    CAS  Article  Google Scholar 

  34. 34.

    C. Cozic, D. Rousseau and R. Tabary, Broadening the application range of water shutoff/conformance-control microgels: An investigation of their chemical robustness, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2008).

    Google Scholar 

  35. 35.

    H. Li, Smart hydrogel modelling, Springer, New York (2009).

    Book  Google Scholar 

  36. 36.

    M. J. Caulfield, X. Hao, G. G. Qiao and D. H. Solomon, Polymer, 44, 3817 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    G. Dupuis, R. S. Al-Maamari, A.A. Al-Hashmi, H. H. Al-Sharji and A. Zaitoun, Mechanical and thermal stability of polyacrylamidebased microgel products for EOR, SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers (2013).

    Google Scholar 

  38. 38.

    U. Demirci and A. Khademhosseini, Gels handbook: Fundamentals, properties and applications (in 3 volumes), World Scientific Publishing Company Pte Ltd. (2016).

    Book  Google Scholar 

  39. 39.

    H. Jamshidi and A. Rabiee, Adv. Mater. Sci. Eng., 2014 (2014).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Vafaie Sefti or Saeid Sadeghnejad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farasat, A., Sefti, M.V., Sadeghnejad, S. et al. Effects of reservoir temperature and water salinity on the swelling ratio performance of enhanced preformed particle gels. Korean J. Chem. Eng. 34, 1509–1516 (2017). https://doi.org/10.1007/s11814-017-0017-1

Download citation

Keywords

  • Preformed Particle Gels
  • Swelling Ratio
  • Experimental Design
  • Reservoir Temperature
  • Water Salinity