Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of reservoir temperature and water salinity on the swelling ratio performance of enhanced preformed particle gels

Abstract

Preformed particle gel (PPG) treatment is now one of the most effective remediation techniques for conformance controlling and selective plugging of high-water flow conduits in mature water-flooded oil reservoirs. Recognizing the intrinsic properties of PPGs, e.g., the swelling ratio, in reservoir condition is of prime importance to the optimization of their performance as plugging agents. In this study, the classical and three-level full factorial experimental design methods are joined with laboratory measurements to investigate the swelling ratio dependency of a new class of enhanced PPGs at different brine salinities and reservoir temperatures. To cover severe reservoir conditions, the reservoir temperature from 298 to 418 K and brine salinity from 0 to 225,000 ppm were considered during the laboratory measurements. The results show that the swelling ratio decreases by rising water salinity. Moreover, the swelling ratio rises by increasing reservoir temperature up to 380 K and then starts to decrease. The factor screening illustrates that the swelling ratio is more dependent on salinity than the reservoir temperature in low salinity solutions, while is less dependent on salinity in high salinity solutions. In addition, a precise mathematical model was developed to predict the swelling ratio of PPGs in a wide range of salinities and temperatures. The results of this study present a practical insight into the swelling-related behavior of the PPGs at reservoir conditions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.M. Almohsin, B. Bai, A.H. Imqam, M. Wei, W. Kang, M. Delshad and K. Sepehrnoori, Transport of nanogel through porous media and its resistance to water flow, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers (2014).

  2. 2.

    A. Imqam, B. Bai, M. Al Ramadan, M. Wei, M. Delshad and K. Sepehrnoori, SPE J., 20, 1083 (2014).

  3. 3.

    C. Durán-Valencia, B. Bai, H. Reyes, R. Fajardo-López, F. Barragán-Aroche and S. López-Ramírez, Polymer J., 46, 277 (2014).

  4. 4.

    M.O. Elsharafi and B. Bai, Effect of strong preformed particle gel on unswept oil zones/areas during conformance control treatments, EAGE Annual Conference & Exhibition incorporating SPE Europec, Society of Petroleum Engineers (2013).

  5. 5.

    A. Goudarzi, H. Zhang, A. Varavei, P. Taksaudom, Y. Hu, M. Delshad, B. Bai and K. Sepehrnoori, Fuel, 140, 502 (2015).

  6. 6.

    N. Hajilary, M.V. Sefti, A., Shahmohammadi, A.D. Koohi and A. Mohajeri, Can. J. Chem. Eng., 93, 1957 (2015).

  7. 7.

    A. Imqam and B. Bai, Fuel, 148, 178 (2015).

  8. 8.

    Q. Sang, Y. Li, L. Yu, Z. Li and M. Dong, Fuel, 136, 295 (2014).

  9. 9.

    O. Okay, General properties of hydrogels, Hydrogel sensors and actuators: Engineering and technology, G. Gerlach and K.-F. Arndt, Eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 1 (2010).

  10. 10.

    C. Özeroglu and A. Birdal, eXPRESS Polymer Lett., 3, 168 (2009).

  11. 11.

    H.R. Saghafi, M. A. Emadi, A. Farasat, M. Arabloo and A. Naderifar, Chem. Eng. Res. Design, 112, 175 (2016).

  12. 12.

    B. Bai, J. Zhou, Y. Liu and P. Tongwa, Thermo-dissoluble polymer for in-depth mobility control, International Petroleum Technology Conference (2013).

  13. 13.

    H.R. Saghafi, A. Naderifar, S. Gerami and M.A. Emadi, Can. J. Chem. Eng., 94, 1880 (2016).

  14. 14.

    T. S. Young, J. A. Hunt, D.W. Green and G. P. Willhite, SPE Reservoir Engineering, 4, 348 (1989).

  15. 15.

    T.N. Tu and B. Wisup, Investigating the effect of polymer gels swelling phenomenon under reservoir conditions on polymer conformance control process, International Petroleum Technology Conference (2011).

  16. 16.

    B. Brattekås, A. Graue and R. Seright, SPE Reservoir Evaluation & Engineering, 19, 331 (2015).

  17. 17.

    F.A. Muhammed, B. Bai and A. Al Brahim, A simple technique to determine the strength of millimeter-sized particle gel, SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers (2014).

  18. 18.

    B. Bai, F. Huang, Y. Liu, R. S. Seright and Y. Wang, Case study on prefromed particle gel for in-depth fluid diversion, SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers (2008).

  19. 19.

    A. Mousavi Moghadam, M. Vafaie Sefti, M. Baghban Salehi and A. Dadvand Koohi, J. Petroleum Exploration and Production Technol., 2, 85 (2012).

  20. 20.

    P. J. Molloy, M. J. Smith and M. J. Cowling, Mater. Design, 21, 169 (2000).

  21. 21.

    H.R. Saghafi, A. Naderifar, S. Gerami and A. Farasat, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 35, 83 (2016).

  22. 22.

    A. Imqam, B. Bai, M. Wei, H. Elue and F.A. Muhammed, SPE Production & Operations, 31, 247 (2016).

  23. 23.

    P. Tongwa and B. Bai, J. Petroleum Sci. Eng., 124, 35 (2014).

  24. 24.

    B. Bai, L. Li, Y. Liu, H. Liu, Z. Wang and C. You, SPE Reservoir Evaluation Eng., 10, 415 (2007).

  25. 25.

    B. Bai, Y. Liu, J.-P. Coste and L. Li, SPE Reservoir Evaluation & Engineering, 10, 176 (2007).

  26. 26.

    X. Zhang, X. Wang, L. Li, S. Zhang and R. Wu, React. Funct. Polymers, 87, 15 (2015).

  27. 27.

    A. Jmp and M. Proust, Modeling and multivariate methods, SAS Institute (2012).

  28. 28.

    C. Croarkin and P. Tobias, Nist/sematech e-handbook of statistical methods, NIST/SEMATECH, July. Available online: http://www.itl.nist.gov/div898/handbook (2006).

  29. 29.

    M. Proust and A. Jmp, Design of experiments guide, SAS Institute, Cary, NC, USA (2009).

  30. 30.

    E.M. Ahmed, J. Adv. Res., 6, 105 (2015).

  31. 31.

    A.M. Mathur, S. K. Moorjani and A. B. Scranton, Journal of Macromolecular Science, Part C, 36, 405 (1996).

  32. 32.

    G.R. Mahdavinia, A. Pourjavadi, H. Hosseinzadeh and M. J. Zohuriaan, European Polymer J., 40, 1399 (2004).

  33. 33.

    E. Vasheghani-Farahani, J. H. Vera, D. G. Cooper and M. E. Weber, Ind. Eng. Chem. Res., 29, 554 (1990).

  34. 34.

    C. Cozic, D. Rousseau and R. Tabary, Broadening the application range of water shutoff/conformance-control microgels: An investigation of their chemical robustness, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2008).

  35. 35.

    H. Li, Smart hydrogel modelling, Springer, New York (2009).

  36. 36.

    M. J. Caulfield, X. Hao, G. G. Qiao and D. H. Solomon, Polymer, 44, 3817 (2003).

  37. 37.

    G. Dupuis, R. S. Al-Maamari, A.A. Al-Hashmi, H. H. Al-Sharji and A. Zaitoun, Mechanical and thermal stability of polyacrylamidebased microgel products for EOR, SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers (2013).

  38. 38.

    U. Demirci and A. Khademhosseini, Gels handbook: Fundamentals, properties and applications (in 3 volumes), World Scientific Publishing Company Pte Ltd. (2016).

  39. 39.

    H. Jamshidi and A. Rabiee, Adv. Mater. Sci. Eng., 2014 (2014).

Download references

Author information

Correspondence to Mohsen Vafaie Sefti or Saeid Sadeghnejad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farasat, A., Sefti, M.V., Sadeghnejad, S. et al. Effects of reservoir temperature and water salinity on the swelling ratio performance of enhanced preformed particle gels. Korean J. Chem. Eng. 34, 1509–1516 (2017). https://doi.org/10.1007/s11814-017-0017-1

Download citation

Keywords

  • Preformed Particle Gels
  • Swelling Ratio
  • Experimental Design
  • Reservoir Temperature
  • Water Salinity