Skip to main content
Log in

Simplified design of proportional-integral-derivative (PID) controller to give a time domain specification for high order processes

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An efficient simplified method is proposed for the time domain design of industrial proportional-integral-derivative (PID) controllers and lead-lag compensators for high order single input single output (SISO) systems. The proposed analytical method requires no trial error steps for a lead-lag compensator design in the time domain by using the root-locus method. A practical PID controller design method was obtained based on the corresponding lead-lag compensator to give a required time-domain specification. Simulation studies were carried out to illustrate the control performance of the controllers by the proposed method. The proposed PID controller and lead-lag compensator directly satisfied time domain control specifications such as damping ratio, maximum overshoot, settling time and steady sate error without trial and error steps. The suggested algorithm can easily be integrated with a toolbox in commercial software such as Matlab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Åström and T. Hägglund, Control Eng. Pract., 9, 1163 (2001).

    Article  Google Scholar 

  2. H. Thu and M. Lee, Korean J. Chem. Eng., 30, 2151 (2013).

    Article  CAS  Google Scholar 

  3. T. Vu, and M. Lee, Korean J. Chem. Eng., 30, 546 (2013).

    Article  CAS  Google Scholar 

  4. H. Y. Horng, 2013 International Symposium on Next-Generation Electronics, 579 (2013).

    Book  Google Scholar 

  5. G. F. Franklin, A. Emami-Naeini and J. D. Powell, Feedback control of dynamic systems, Pearson Prentice Hall, Upper Saddle River, N. J. (2006).

    Google Scholar 

  6. D.-J. Wang, Automatica, 45, 1026 (2009).

    Article  Google Scholar 

  7. R. Zanasi, S. Cuoghi and L. Ntogramatzidis, Int. J. Control, 84, 1830 (2011).

    Article  Google Scholar 

  8. K. S. Yeung, K. W. Wong and K. L. Chen, IEEE Trans. Educ., 41, 76 (1998).

    Article  Google Scholar 

  9. B. Vanavil, A. V. N. L. Anusha, M. Perumalsamy and A. S. Rao, Chem. Eng. Commun., 201, 1468 (2014).

    Article  CAS  Google Scholar 

  10. A. P. Loh, X. Cai and W. W. Tan, Automatica, 40, 423 (2004).

    Article  Google Scholar 

  11. N. Tan, Computers & Electrical Engineering, 29, 835 (2003).

    Article  Google Scholar 

  12. J. Xu, 27th Chinese Control Conference, 16-18 July 2008, pp. 752–757.

    Google Scholar 

  13. R. Zanasi and S. Cuoghi, IFAC Proceedings, 45, 524 (2012).

    Article  Google Scholar 

  14. Z. Y. Nie, Q. G. Wang, M. Wu, Y. He and Q. Qin, Ind. Eng. Chem. Res., 50, 1330 (2011).

    Article  CAS  Google Scholar 

  15. W. C. Messner, M. D. Bedillion, X. Lu and D. C. Karns, IEEE Control Syst., 27, 44 (2007).

    Article  Google Scholar 

  16. K. Ogata, Modern control engineering, Prentice Hall, Upper Saddle River, NJ (2002).

    Google Scholar 

  17. K. Ogata, Modern control engineering, Prentice Hall, Englewood Cliffs, NJ (1990).

    Google Scholar 

  18. M. C. M. Teixeira, IEEE Trans. Educ., 37, 63 (1994).

    Article  Google Scholar 

  19. Q. Zhang and W. C. Messner, Proc. 2011 Am. Control Conf., 693 (2011).

    Book  Google Scholar 

  20. R. T. O’Brien and J. M. Watkins, Proc. 2005 Am. Control Conf., 7, 4935 (2005).

    Article  Google Scholar 

  21. S. W. Sung and I.-B. Lee, Chem. Eng. Sci., 55, 1883 (2000).

    Article  CAS  Google Scholar 

  22. J. G. Ziegler and N. B. Nichols, InTech, 42, 94 (1995).

    Google Scholar 

  23. I. Kaya, Comput. Chem. Eng., 28, 281 (2004).

    Article  CAS  Google Scholar 

  24. K. J. Åström and T. Hägglund, Automatica, 20, 645 (1984).

    Article  Google Scholar 

  25. I. J. Gyöngy and D. W. Clarke, Control Eng. Pract., 14, 149 (2006).

    Article  Google Scholar 

  26. P. Kumar Padhy and S. Majhi, ISA Trans., 48, 423 (2009).

    Article  Google Scholar 

  27. A. Leva, Eur. J. Control, 3, 150 (1997).

    Article  Google Scholar 

  28. K. G. Papadopoulos and N. I. Margaris, J. Process Control, 23, 905 (2013).

    Article  CAS  Google Scholar 

  29. K. K. Tan, T. H. Lee and X. Jiang, ISA Trans., 39, 219 (2000).

    Article  CAS  Google Scholar 

  30. M. Zhuang and D. P. Atherton, Control Theory and Applications, IEE Proceedings D, 140, 216 (1993).

    Article  Google Scholar 

  31. D. E. Seborg, T. F. Edgar and D. A. Mellichamp, Process dynamics and control, Wiley, Hoboken, NJ (2004).

    Google Scholar 

  32. J. Lam, Int. J. Control, 57, 377 (1993).

    Article  Google Scholar 

  33. A. T. Bahill, IEEE Contr. Syst. Mag., 3, 16 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moonyong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchamna, R., Lee, M. Simplified design of proportional-integral-derivative (PID) controller to give a time domain specification for high order processes. Korean J. Chem. Eng. 34, 961–968 (2017). https://doi.org/10.1007/s11814-017-0007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0007-3

Keywords

Navigation