Skip to main content
Log in

Leaching kinetics of a Nigerian complex covellite ore by the ammonia-ammonium sulfate solution

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrometallurgical treatment of copper sulfide ore is increasingly establishing itself as a feasible route for the extraction of copper and recovery of associated precious metals value. This is attributed to the merits of this route, which include suitability for low-grade and complex ores, high recoveries, competitive economics, and other operational features. The leaching kinetics of Nigerian complex covellite ore was investigated in ammonia-ammonium sulfate solution. The concentration of ammonia and ammonium sulfate, the ore particle size, and the temperature were chosen as parameters in the experiments. The results show that temperature, concentration of ammonia-ammonium sulfate has favorable influence on the leaching rate of covellite ores; however, leaching rate decreases with increasing particle size. At optimal conditions (1.75mol/L NH4OH+0.5mol/L (NH4)2SO4, −90+75 μm, 75 °C, with moderate stirring) about 86.2% of copper ore reacted within 120 minutes. The mechanism of the leaching was further established by characterizing the raw ore and the leached residue by EDXRF - chemical composition, SEM - structural morphology and XRD - phase identification studies. From the X-ray diffraction analysis, the partially unreacted Cu and S phases were presumed to be CuO, and the iron present in the CuS phase was mainly converted to hematite (Fe2O3·H2O), as the CuS phase disintegrated and remained in the residue afterward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. KunKul, A. Gulezgin and N. Demirkiran, CI & CEQ., 19 (1), 25 (2013).

    Article  CAS  Google Scholar 

  2. J. E. Dutrizac, J. D. Miller and M. E. Wadsworth, Metall. Trans B., 10B, 149 (1979).

    Google Scholar 

  3. T. Calban, S. Colak and M. Yesilyurt, Chem. Eng. Commum., 192, 1515 (2005).

    Article  CAS  Google Scholar 

  4. A. Ekmekyapar, R. Oya and A. Kunkul, J. Chem. Biochem. Eng. Q., 17 (4), 261 (2003).

    CAS  Google Scholar 

  5. S. W. Goh, A. N. Buckley and R. N. Lamb, Miner. Eng., 19, 204 (2006).

    Article  CAS  Google Scholar 

  6. M. Schlesinger, M. King, K. Sole and W. Davenport, Extractive metallurgy of copper, (fifth edition), Elsevier, 1 (2011).

    Google Scholar 

  7. J. Sullivan, US Bureau of Mines, Technical Paper 487 (1930).

    Google Scholar 

  8. W. Liang and M. H. Whangbo Sol. State Commun., 85 (5), 405 (1993).

  9. K. Tezuka, W. C. Sheets, R. Kurihara, Y. J. Shan, H. Imoto, T. J. Marks and K. R. Poeppelmeier, Solid State Sci., 9, 95 (2007).

    Article  CAS  Google Scholar 

  10. S. Ghosh, B. Ambade, S. K. Prasad and A. K. Choudhary, Int. J. Eng. Sci., 1 (9), 8 (2012).

    Google Scholar 

  11. M. E. Arzutug, M. M. Kocakerim and M. Copur, Ind. Eng. Chem. Res., 43 (15), 4118 (2004).

    Article  CAS  Google Scholar 

  12. W. Liu, M. T. Tang, C. B. Tang, J. He, S. H. Yang and J. G. Yang, Trans. Nonferrous Met. Soc. China, 20, 910 (2010).

    Article  CAS  Google Scholar 

  13. X. Wang, Q. Chen, H. Hu, Z. Yin and Z. Xiao, Hydrometallurgy, 99(3/4), 231 (2009).

    Article  CAS  Google Scholar 

  14. D. Bingol, M. Canbazoglu and S. Aydgan, Hydrometallurgy, 76(1/2), 55 (2005).

    Article  Google Scholar 

  15. M. Y. Woode, M. A. Acheampong and O. W Achaw, IJAR, 2 (5), 1132 (2014).

    CAS  Google Scholar 

  16. Z. Liu, Z. Yin, H. Hu and Q. Chen, Trans. Nonferrous Met. Soc. China, 22, 2822 (2012).

    Article  CAS  Google Scholar 

  17. M. M. Antonijevic, M. D. Dimitrijevic and Z. O. Stevanovic, J. Hazard. Mater., 158 (1), 23 (2008).

    Article  CAS  Google Scholar 

  18. D. Bingol and M. Canbazoglu, Hydrometallurgy, 72(1/2), 159 (2004).

    Article  CAS  Google Scholar 

  19. O. N. Ata, S. Çolak, Z. Ekinci and M. Çopur, Chem. Eng. Technol., 24 (4), 409 (2001).

    Article  CAS  Google Scholar 

  20. A. A. Baba, K. I. Ayinla, F. A. Adekola, R. B. Bale, M. K. Ghosh, A. F. Alabi, A. Sheik and I. O. Folorunso, Int. J. Miner. Metall. Mater., 20 (11), 1021 (2013).

    Article  CAS  Google Scholar 

  21. K. H. Park, D. Mohapatra, B. R. Reddy and C. W. Nam, Hydrometallurgy, 86(3-4), 164 (2007).

    Article  CAS  Google Scholar 

  22. M. Cambazoglu, D. Bingol and H. Guler, J. Ore Dressing, 7 (14), 1 (2005).

    Google Scholar 

  23. I. G. Reilly and D. S. Scott, Canadian J. Chem. Eng., 55, 527 (1977).

    Article  CAS  Google Scholar 

  24. W. W. Scott, Standard Methods of Chemical Analysis; Van Nostrand, New York (1963).

    Google Scholar 

  25. O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, 361 (1972).

    Google Scholar 

  26. S. L. Bell, G. D. Welch and P. G. Bennett, Hydrometallurgy, 39(1-3), 11 (1995).

    Article  CAS  Google Scholar 

  27. L. You-Cai, Y. Wei, F. Jiang-Gang, L. Li-Feng and Q. Dong, Canadian J. Chem. Eng., 91 (4), 770 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alafara Abdullahi Baba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, A.A., Balogun, A.F., Olaoluwa, D.T. et al. Leaching kinetics of a Nigerian complex covellite ore by the ammonia-ammonium sulfate solution. Korean J. Chem. Eng. 34, 1133–1140 (2017). https://doi.org/10.1007/s11814-017-0005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0005-5

Keywords

Navigation