Skip to main content
Log in

Ultrafine palladium nanoparticle-bonded to polyetheylenimine grafted reduced graphene oxide nanosheets: Highly active and recyclable catalyst for degradation of dyes and pigments

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Much attention has been increasingly focused on the applications of noble metal nanoparticles (NPs) for the catalytic degradation of various dyes and pigments in industrial wastewater. We have demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibit high catalytic activity and excellent durability in reductive degradation of MO, R6G, RB. Specific surface area was successfully prepared by simultaneous reduction of Pd(OAc)2 chelating to PEI grafted graphene oxide nanosheets modified with Fe3O4. The as-prepared Pd NPs/Fe3O4-PEI-RGO nanohybrids were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution TEM and energy dispersive X-ray spectroscopy, and UV-lambda 800 spectrophotometer, respectively. The catalytic activity of Pd NPs/Fe3O4-PEI-RGO nanohybrids to the degradation of MO, R6G, RB with NaBH4 was tracked by UV-visible spectroscopy. It was clearly demonstrated that Pd NPs/Fe3O4-PEI-RGO nanohybrids exhibited high catalytic activity toward the degradation of dyes and pigments, which could be relevant to the high surface areas of Pd NPs and synergistic effect on transfer of electrons between reduced graphene oxide (RGO), PEI and Pd NPs. Notably, Pd NPs/Fe3O4-PEI-RGO nanohybrids were easily separated and recycled thirteen times without obvious decrease in system. Convincingly, Pd NPs/Fe3O4-PEI-RGO nanohybrids would be a promising catalyst for treating industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H.B. He, B. Li, J.P. Dong, Y.Y. Lei, T. L. Wang, Q.W. Yu, Y.Q. Feng and Y. B. Sun, ACS Appl. Mater. Interfaces, 5, 8058 (2013).

  2. S. Li, H. Li, J. Liu, H. Zhang, Y. Yang, Z. Yang, L. Wang and B. Wang, Dalton Transactions, 44, 9193 (2015).

    Article  CAS  Google Scholar 

  3. S. Yang, X. Yang, X. Shao, R. Niu and L. Wang, J. Hazard. Mater., 186, 659 (2011).

    Article  CAS  Google Scholar 

  4. S. Sekar, M. Surianarayanan, V. Ranganathan, D.R. MacFarlane and A.B. Mandal, Environ. Sci. Technol., 46, 4902 (2012).

    Article  CAS  Google Scholar 

  5. P. Cañizares, F. Martínez, C. Jiménez, J. Lobato and M.A. Rodrigo, Environ. Sci. Technol., 40, 6418 (2006).

    Article  Google Scholar 

  6. L. Zhou, B. He and J. Huang, ACS Appl. Mater. Interfaces, 5, 8678 (2013).

    Article  CAS  Google Scholar 

  7. G. Laera, D. Cassano, A. Lopez, A. Pinto, A. Pollice, G. Ricco and G. Mascolo, Environ. Sci Technol., 46, 1010 (2012).

    Article  CAS  Google Scholar 

  8. I. Oller, S. Malato and J. A. Sánchez-Pérez, Science of the Total Environment, 409, 4141 (2011).

    Article  CAS  Google Scholar 

  9. Y. Su, X. Lu, M. Xie, H. Geng, H. Wei, Z. Yang and Y. Zhang, Nanoscale, 5, 8889 (2013).

    Article  CAS  Google Scholar 

  10. X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie and X. Wang, J. Am. Chem. Soc., 133, 3693 (2011).

    Article  CAS  Google Scholar 

  11. Abhilash, K. Revati and B.D. Pandey, Bullet. Mater. Sci., 34, 191 (2011).

    Article  CAS  Google Scholar 

  12. C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang and Y. Xia, Chem. Soc. Rev., 40, 44 (2011).

    Article  CAS  Google Scholar 

  13. Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Zhao, J. Am. Chem. Soc., 132, 8466 (2010).

    Article  CAS  Google Scholar 

  14. R. Ghosh Chaudhuri and S. Paria, Dalton Transactions, 43, 5526 (2014).

    Article  CAS  Google Scholar 

  15. G. Fu, L. Tao, M. Zhang, Y. Chen, Y. Tang, J. Lin and T. Lu, Nanoscale, 5, 8007 (2013).

    Article  CAS  Google Scholar 

  16. Z. Wang, S. Zheng, J. Cai, P. Wang, J. Feng, X. Yang, L. Zhang, M. Ji, F. Wu, N. He and N. Wan, Anal. Chem., 85, 11602 (2013).

    Article  CAS  Google Scholar 

  17. Y. Li, H. Su, K. S. Wong and X.Y. Li, J. Phys. Chem. C, 114, 10463 (2010).

    Article  CAS  Google Scholar 

  18. Z. Xu, Y. Hou and S. Sun, J. Am. Chem. Soc., 129, 8698 (2007).

    Article  CAS  Google Scholar 

  19. X. Huo, J. Liu, B. Wang, H. Zhang, Z. Yang, X. She and P. Xi, J. Mater. Chem. A, 1, 651 (2013).

    Article  CAS  Google Scholar 

  20. S. Yin, Y. Zhang, J. Kong, C. Zou, C. M. Li, X. Lu, J. Ma, F.Y.C. Boey and X. Chen, ACS Nano, 5, 3831 (2011).

    Article  CAS  Google Scholar 

  21. A. Knäbel, S. Stehle, R. B. Schäfer and R. Schulz, Environ. Sci. Technol., 46, 8397 (2012).

    Article  Google Scholar 

  22. G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou and T. Lu, J. Phys. Chem. C, 117, 9826 (2013).

    Article  CAS  Google Scholar 

  23. Z. Xu, C. Shen, Y. Hou, H. Gao and S. Sun, Chem. Mater., 21, 1778 (2009).

    Article  CAS  Google Scholar 

  24. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  25. K. Qu, L. Wu, J. Ren and X. Qu, ACS Appl. Mater. Interfaces, 4, 5001 (2012).

    Article  CAS  Google Scholar 

  26. S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, Carbon, 48, 4466 (2010).

    Article  CAS  Google Scholar 

  27. D.C. Marcano, D.V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010).

    Article  CAS  Google Scholar 

  28. F. Jiang, R. Li, J. Cai, W. Xu, A. Cao, D. Chen, X. Zhang, C. Wang and C. Shu, J. Mater. Chem. A, 3, 19433 (2015).

    Article  CAS  Google Scholar 

  29. Z. Jin, D. Nackashi, W. Lu, C. Kittrell and J. M. Tour, Chem. Mater., 22, 5695 (2010).

    Article  CAS  Google Scholar 

  30. Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng and K. Müllen, J. Am. Chem. Soc., 134, 9082 (2012).

    Article  CAS  Google Scholar 

  31. H. Paloniemi, M. Lukkarinen, T. Ääritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka and J. Lukkari, Langmuir, 22, 74 (2006).

    Article  CAS  Google Scholar 

  32. G. Fu, X. Jiang, L. Tao, Y. Chen, J. Lin, Y. Zhou, Y. Tang and T. Lu, Langmuir, 29, 4413 (2013).

    Article  CAS  Google Scholar 

  33. S.W. Won, J. Park, J. Mao and Y. S. Yun, Bioresour. Technol., 102, 3888 (2011).

    Article  CAS  Google Scholar 

  34. J. Han, L. Wang and R. Guo, J. Mater. Chem., 22, 5932 (2012).

    Article  CAS  Google Scholar 

  35. T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, S. Chen, Z. Xu, D. Shi, J. Li and H. Gao, J. Phys. Chem. B, 109, 23233 (2005).

    Article  CAS  Google Scholar 

  36. J. Das, M. A. Aziz and H. Yang, J. Am. Chem. Soc., 128, 16022 (2006).

    Article  CAS  Google Scholar 

  37. Z. Wei, J. Sun, Y. Li, A.K. Datye and Y. Wang, Chem. Soc. Rev., 41, 7994 (2012).

    Article  CAS  Google Scholar 

  38. P. Venkatesan and J. Santhanalakshmi, Langmuir, 26, 12225 (2010).

    Article  CAS  Google Scholar 

  39. M. Nemanashi and R. Meijboom, J. Colloid Interface Sci., 389, 260 (2013).

    Article  CAS  Google Scholar 

  40. J. Huang, S. Vongehr, S. Tang, H. Lu, J. Shen and X. Meng, Langmuir, 25, 11890 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaodan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Zhao, S., Zhang, H. et al. Ultrafine palladium nanoparticle-bonded to polyetheylenimine grafted reduced graphene oxide nanosheets: Highly active and recyclable catalyst for degradation of dyes and pigments. Korean J. Chem. Eng. 34, 609–618 (2017). https://doi.org/10.1007/s11814-016-0368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0368-z

Keywords

Navigation