Skip to main content

Advertisement

Log in

Phase diagram of CaSO4 reductive decomposition by H2 and CO

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The CaSO4 reductive decomposition is an interesting issue in both the reduction zone of fluidized bed combustors (FBCs) for coal combustion and the fuel reactor of chemical-looping combustion (CLC) system. Under CO or H2 atmosphere, CaSO4 is reduced to CaS and CaO, together with the releases of gas sulfides, which causes environmental pollutions. To lessen sulfur release, it is important to figure out the chemical stability of CaSO4 reductive decomposition. Thus, the chemical stability of CaSO4/CaS/CaO under CO or H2 atmosphere was studied in consideration of SO2, COS and H2S emissions. The results show that regions I (VI), II (V), and III (IV) are the stability fields of CaSO4, CaS and CaO, respectively. The range for CaO stability is increasing with reaction temperature and partial pressures of CO2 and H2O. Within the reaction temperature range of 800 and 1,000 °C, when the CaSO4-CO-H2 reaction system reaches the triple equilibrium point, the main gas sulfur released is SO2, followed by H2S, while COS generation is much smaller. In a real reaction system, when the values of real P H2/P H2O (P CO /P CO2), P SO2, P H2S (P COS ), P H2O (P CO2) and T fall into Region I (IV), or II (V), the final product should be CaSO4 or CaS, and the sulfur release from CaSO4 reduction can be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Anthony and D. L. Granatstein, Prog. Energy Combust., 27, 215 (2001).

    Article  CAS  Google Scholar 

  2. J. Cheng, J. Zhou, J. Liu, Z. Zhou, Z. Huang, X. Cao, X. Zhao and K. Cen, Prog. Energy Combust., 29, 381 (2003).

    Article  CAS  Google Scholar 

  3. A. Al-Shawabkeh, H. Matsuda and M. Hasatani, J. Chem. Eng. Jpn., 28, 53 (1995).

    Article  CAS  Google Scholar 

  4. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan and L. F. de Diego, Prog. Energy Combust., 38, 215 (2012).

    Article  CAS  Google Scholar 

  5. C. Linderholm, T. Mattisson and A. Lyngfelt, Fuel, 88, 2083 (2009).

    Article  CAS  Google Scholar 

  6. H. J. Ryu, D. H. Bae and G. T. Jin, Korean J. Chem. Eng., 20, 960 (2003).

    Article  CAS  Google Scholar 

  7. H. J. Ryu, N. Y. Lim, D. H. Bae and G. T. Jin, Korean J. Chem. Eng., 20, 157 (2003).

    Article  CAS  Google Scholar 

  8. H. J. Ryu, G. T. Jin, D. H. Bae and C. K. Yi, Proc 5th China-Korea Joint Workshop on Clean Energy Technology, Qingdao, China (2004).

    Google Scholar 

  9. H. J. Ryu, Y. Seo and G. T Jin, Proc. of the Regional Symp on Chem Eng, Hanoi, Vietnam (2005).

    Google Scholar 

  10. H. J. Ryu, S. H. Jo, Y. Park, D. H. Bae and S. Kim, Proc. 1st Int Conf on Chemical Looping, Lyon, France (2010).

    Google Scholar 

  11. A. Lyngfelt, T. Mattisson, C. Linderholm and M. Ryden, Proc. 4th International Conference on Chemical Looping. Nanjing, China (2016).

    Google Scholar 

  12. L. Shen, M. Zheng, J. Xiao and R. Xiao, Combust. Flame, 154, 489 (2008).

    Article  CAS  Google Scholar 

  13. Q. Song, R. Xiao, Z. Deng, L. Shen and M. Zhang, Korean J. Chem. Eng., 23, 592 (2009).

    Article  Google Scholar 

  14. Q. Song, R. Xiao, Z. Deng, W. Zheng, L. Shen and J. Xiao, Energy Fuels, 22, 3661 (2008).

    Article  CAS  Google Scholar 

  15. H. Tian, Q. Guo and J. Chang, Energy Fuels, 22, 3915 (2008).

    Article  CAS  Google Scholar 

  16. M. Zheng, L. Shen and J. Xiao, Int. J. Greenh. Gas Con., 4, 716 (2010).

    Article  CAS  Google Scholar 

  17. P. F. B. Hansen, K. Dam-Johansen and K. Østergaard, Chem. Eng. Sci., 48, 1325 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zheng.

Additional information

This paper is reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Xing, Y., Zhong, S. et al. Phase diagram of CaSO4 reductive decomposition by H2 and CO. Korean J. Chem. Eng. 34, 1266–1272 (2017). https://doi.org/10.1007/s11814-016-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0360-7

Keywords

Navigation