Skip to main content
Log in

Mechanism underlying the effect of conventional drying on the grinding characteristics of Ximeng lignite

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Same amounts of moisture were removed from Ximeng lignite (XL) with different particle size ranges pretreated at different drying temperatures. The effect of conventional drying on the grindability of the XLs was investigated. Increasing the drying temperature improved the grindability of all the samples. The results of scanning electron microscopy and mercury intrusion porosimetry revealed that the dominant mechanism enhancing the grindability of XL with high moisture was the pore structure destruction induced by the steam jet flow generated with the removal of moisture. Especially, the development of large fractures had a strong connection with the change in the grindability. According to the pore size distribution, the internal structure of the 2.5-4.0mm coal samples did not develop well under high drying temperature because of the exceedingly short heating time. Therefore, coal particle size, drying temperature, and heating time must be coordinated well to achieve the enhanced drying effect. The grindability of XL had a negative linear correlation with the pore volume fractal dimension, revealing the possibility of fractal dimension for the analysis of lignite grindability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yi and J. W. Lee, Korean J. Chem. Eng., 33, 3401 (2016).

    Article  CAS  Google Scholar 

  2. H. Choi, W. Jo, S. Kim, J. Yoo, D. Chun, Y. Phim, J. Lim and S. Lee, Korean J. Chem. Eng., 31, 2151 (2014).

    Article  CAS  Google Scholar 

  3. S. W. Kingman and N. A. Rowson, Miner Eng., 11, 1081 (1998).

    Article  CAS  Google Scholar 

  4. B. Csöke, L. Bokányi, J. Bõhm and S. Pethö, Appl. Energy, 74, 359 (2003).

    Article  Google Scholar 

  5. D. Životić, A. Bechtel, R. Sachsenhofer, R. Gratzer, D. Radić, M. Obradović and K. Tojanović, Int. J. Coal. Geol., 131, 344 (2014).

    Article  Google Scholar 

  6. H. B. Vuthaluru, R. J. Brooke, D. K. Zhang and H. M. Yan, Fuel Process Technol., 81, 67 (2003).

    Article  CAS  Google Scholar 

  7. S. C. Chelgani, J. C. Hower, E. Jorjani, S. Mesroghli and A. h. Bagherieh, Fuel Process Technol., 89, 13 (2008).

    Article  CAS  Google Scholar 

  8. E. Lester, S. Kingman and C. Dodds, Fuel, 84, 423 (2005).

    Article  CAS  Google Scholar 

  9. P. C. Harrison and N. A. Rowson, I Chem. E Res. Event, 38, 292 (1997).

    Google Scholar 

  10. S. Marland, B. Han, A. Merchant and N. Rowson, Fuel, 80, 1839 (2001).

    Article  CAS  Google Scholar 

  11. J. Lytle, N. Choi and K. Prisbrey, Int. J. Miner Process., 36, 107 (1992).

    Article  CAS  Google Scholar 

  12. S. Marland, B. Han, A. Merchant and N. Ravson, Fuel, 79, 1283 (2000).

    Article  CAS  Google Scholar 

  13. J. F. Zhu, J. Z. Liu, J. H. Wu, J. Cheng, J. H. Zhou and K. F. Cen, Fuel, 162, 305 (2015).

    Article  CAS  Google Scholar 

  14. E. Lester, S. Kingman and C. Dodds, Fuel, 84, 423 (2005).

    Article  CAS  Google Scholar 

  15. J. F. Zhu, J. Z. Liu, J. H. Wu, J. Cheng, J. H. Zhou and K. F. Cen, Fuel Process Technol., 130, 62 (2015).

    Article  CAS  Google Scholar 

  16. P. Bevilacqua and G. Ferrara, Int. J. Miner Process., 95, 117 (1996).

    Article  Google Scholar 

  17. M. M. Mahamud and M. F. Novo, Fuel, 87, 222 (2008).

    Article  CAS  Google Scholar 

  18. J. Cheng, X. Wang, T. Si, F. Zhou, J. H. Zhou and K. F. Cen, Fuel Process Technol., 149, 49 (2016).

    Article  CAS  Google Scholar 

  19. S. Hu, M. Li, J. Xiang, L. Sun, P. Li, S. Su and X. Sun, Fuel, 83, 1307 (2004).

    Article  Google Scholar 

  20. W. Zuo, Y. Zhao, Y. He, F. Shi and C. Duan, Int. J. Mining Sci. Technol., 22, 121 (2012).

    Article  Google Scholar 

  21. E. L. And and S. Kingman, Energy Fuel, 18, 140 (2004).

    Article  Google Scholar 

  22. S. Samanli, Fuel, 90, 659 (2011).

    Article  CAS  Google Scholar 

  23. X. Wang and R. He, Korean J. Chem. Eng., 24, 466 (2007).

    Article  CAS  Google Scholar 

  24. W. I. Friesen and R. J. Mikula, J. Colloid Interface Sci., 120, 263 (1987).

    Article  CAS  Google Scholar 

  25. K. S. W. Sing and R. T. Williams, Adsorpt. Sci. Technol., 22, 773 (2004).

    Article  CAS  Google Scholar 

  26. J. Lai and G. Wang, J. Nat. Gas Sci. Eng., 24, 185 (2015).

    Article  CAS  Google Scholar 

  27. K. Li and R. N. Horne, Geothermics, 35, 198 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Liu.

Additional information

This paper is reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, J., He, X. et al. Mechanism underlying the effect of conventional drying on the grinding characteristics of Ximeng lignite. Korean J. Chem. Eng. 34, 1250–1259 (2017). https://doi.org/10.1007/s11814-016-0355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0355-4

Keywords

Navigation