Skip to main content
Log in

Pyrolysis kinetic analysis of poly(methyl methacrylate) using evolved gas analysis-mass spectrometry

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The results of evolved gas analysis-mass spectrometry (EGA-MS) analysis were used for the kinetic analysis of poly-methyl methacrylate (PMMA) pyrolysis for the first time. Various kinetic methods, such as model-free, integral master-plots, and model-fitting methods, have been applied to derive the kinetic parameters (activation energy, pre-exponential factor and reaction model). The PMMA pyrolysis reaction mechanism was suggested to occur via a single step unzipping reaction producing methyl methacrylate (MMA) as the main pyrolyzate from the kinetic analysis results and mass spectrum obtained from the EGA-MS measurements. The kinetic parameters derived from model-free method combined with the integral master-plots method were comparable to those obtained from the peak property method (PPM). The theoretical curve derived from the kinetic results by the PPM was also well matched with the experimental thermal conversion curve using the EGA-MS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hong, Y. Chen, M. Wang, L. Ye, C. Qi, H. Yuan, T. Zheng and X. Li, Renew. Sustainable Energy Rev., 69, 168 (2017).

    Article  Google Scholar 

  2. T. F. Astrup, D. Tonini, R. Turconi and A. Boldrin, Waste Manage., 37, 104 (2015).

    Article  CAS  Google Scholar 

  3. D. Chen, L. Yin, H. Wang and P. He, Waste Manage., 34, 2466 (2014).

    Article  CAS  Google Scholar 

  4. T. Kan, V. Strezov and T. J. Evans, Renew. Sustainable Energy Rev., 57, 1126 (2016).

    Article  CAS  Google Scholar 

  5. S. D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud and M. K. Aroua, Energy Convers. Manage., 115, 308 (2016).

    Article  Google Scholar 

  6. H. Lee, Y.-M. Kim, I.-G. Lee, J.-K. Jeon, S.-C. Jung, J. D. Chung, W. G. Choi and Y.-K. Park, Korean J. Chem. Eng., 33, 3299 (2016).

    Article  CAS  Google Scholar 

  7. E. H. Lee, R.-S. Park, H. Kim, S.-H. Park, S.-C. Jung, J.-K. Jeon, S. C. Kim and Y.-K. Park, J. Ind. Eng. Chem., 37, 18 (2016).

    Article  CAS  Google Scholar 

  8. S. H. Park, H. J. Cho, C. Ryu and Y.-K. Park, J. Ind. Eng. Chem., 36, 314 (2016).

    Article  CAS  Google Scholar 

  9. J. S. Cha, S. H. Park, S.-C. Jung, C. Ryu, J.-K. Jeon, M.-C. Shin and Y.-K. Park, J. Ind. Eng. Chem., 40, 1 (2016).

    Article  CAS  Google Scholar 

  10. Association of Plastic Manufacturers Europe, An analysis of European plastics production, demand and waste data, Belgium: European Association of Plastics recycling and Recovery Organisations, 1–34 (2015).

    Google Scholar 

  11. Poly(methyl methacrylate), http://en.wikipedia.org/wiki/Poly(methyl_methacrylate) (Accessed 12. 10. 2016).

  12. B.-S. Kang, S. G. Kim and J.-S. Kim, J. Anal. Appl. Pyrol., 81, 7 (2008).

    Article  CAS  Google Scholar 

  13. G. Lopez, M. Artetxe, M. Amutio, G. Elordi, R. Aguado, M. Olazar and J. Bilbao, Chem. Eng. Process., 49, 1089 (2010).

    Article  CAS  Google Scholar 

  14. J. Domingo and D. Cabanero, Spanish Patent, 192909 (1945).

    Google Scholar 

  15. Y.-M. Kim, H. W. Lee, S.-H. Lee, S.-S. Kim, S. H. Park, J.-K. Jeon, S. Kim and Y.-K. Park, Korean J. Chem. Eng., 28, 2012 (2011).

    Article  CAS  Google Scholar 

  16. P. E. Sanchez-Jimenez, L. A. Perez-Maqueda, A. Perejon and J. M. Criado, Thermochim. Aata, 552, 54 (2013).

    Article  CAS  Google Scholar 

  17. M. Calle, H. J. Jo, C. M. Doherty, A. J. Hill and Y. M. Lee, Macromolecules, 48, 2603 (2015).

    Article  CAS  Google Scholar 

  18. R. Wang and Z. Xu, J. Hazard. Mater., 302, 45 (2016).

    Article  CAS  Google Scholar 

  19. L. Tian, B. Shen, H. Xu, F. Li, Y. Wang and S. Singh, Energy, 103, 533 (2013).

    Article  Google Scholar 

  20. J. Yang, H. Chen, W. Zhao and J. Zhou, J. Anal. Appl. Pyrol., 117, 296 (2016).

    Article  CAS  Google Scholar 

  21. A. Shiono, A. Hosaka, C. Watanabe, N. Teramae, N. Nemoto and H. Ohtani, Polym. Test., 42, 54 (2015).

    Article  CAS  Google Scholar 

  22. Y.-M. Kim, S. Kim, J.-Y. Lee and Y.-K. Park, Environ. Eng. Sci., 30, 706 (2013).

    Article  CAS  Google Scholar 

  23. Y.-M. Kim, T. U. Han, C. Watanabe, N. Teramae, Y.-K. Park, S. Kim and B. Hwang, J. Anal. Appl. Pyrol., 115, 87 (2015).

    Article  CAS  Google Scholar 

  24. Y.-M. Kim, S. Kim, T. U. Han, Y.-K. Park and C. Watanabe, J. Anal. Appl. Pyrol., 110, 435 (2014).

    Article  CAS  Google Scholar 

  25. Y.-M. Kim, H. W. Lee, S. Kim, C. Watanabe and Y.-K. Park, Bioenergy Res., 8, 431 (2015).

    Article  CAS  Google Scholar 

  26. T. U. Han, Y.-M. Kim, C. Watanabe, N. Teramae, Y.-K. Park, S. Kim and Y. Lee, J. Ind. Eng. Chem., 32, 345 (2015).

    Article  CAS  Google Scholar 

  27. ASTM E698-11 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method.

  28. F. J. Gotor, J. M. Criado, J. Malek and N. Koga, J. Phys. Chem. A, 104, 10777 (2000).

    Article  CAS  Google Scholar 

  29. Z. Shuping, W. Yulong, Y. Mingde, L. Chun and T. Junmao, Bioresour. Technol., 101, 359 (2010).

    Article  Google Scholar 

  30. S. Kim, E.-S. Jang, D.-H. Shin and K.-H. Lee, Polym. Degrad. Stabil., 85, 799 (2004).

    Article  CAS  Google Scholar 

  31. Y. Eom, S. Kim, S.-S. Kim and S.-H. Chun, J. Ind. Eng. Chem., 12, 846 (2006).

    CAS  Google Scholar 

  32. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958).

    Article  CAS  Google Scholar 

  33. S. Kim and Y.-C. Kim, J. Anal. Appl. Pyrol., 73, 117 (2005).

    Article  CAS  Google Scholar 

  34. M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget and J. L. Mieloszynski, Polym. Degrad. Stabil., 79, 271 (2003).

    Article  CAS  Google Scholar 

  35. T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama and E. Masuda, Macromolecules, 19, 2160 (1986).

    Article  CAS  Google Scholar 

  36. A. Inaba, T. Kashiwagi and J. E. Brown, Polym. Degrad. Stabil., 21, 1 (1988).

    Article  CAS  Google Scholar 

  37. L. E. Manring, Macromolecules, 22, 2673 (1989).

    Article  CAS  Google Scholar 

  38. L. E. Manring, D. Y. Sogah and G. M. Cohen, Macromolecules, 22, 4652 (1989).

    Article  CAS  Google Scholar 

  39. Y.-H. Hu and C.-Y. Chen, Polym. Degrad. Stabil., 82, 81 (2003).

    Article  CAS  Google Scholar 

  40. B. J. Holland and J. N. Hay, Thermochim. Acta, 388, 253 (2002).

    Article  CAS  Google Scholar 

  41. T. Wanjun, W. Cunxin and C. Donghua, Polym. Degrad. Stabil., 87, 389 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungdo Kim.

Additional information

Co-first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T.U., Kim, YM., Watanabe, A. et al. Pyrolysis kinetic analysis of poly(methyl methacrylate) using evolved gas analysis-mass spectrometry. Korean J. Chem. Eng. 34, 1214–1221 (2017). https://doi.org/10.1007/s11814-016-0354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0354-5

Keywords

Navigation