Skip to main content
Log in

Selective elimination of natural radionuclides during the processing of high grade monazite concentrates by caustic conversion method

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work is directed for removal of the nondesired species (228Ra, 226Ra, 223Ra, 210Pb, Th(IV) and Fe(III)) in the rare earth chloride (RECl3) liquor before separation of Ln(III). The different factors affecting elimination of radium-isotopes, lead (210Pb), Th(IV) and Fe(III) from the RECl3 liquor, have been investigated and optimized. The results indicated that the activity concentration of radionuclides in RECl3 liquor was above the safe limits required during the separation process of Ln(III). Adjustment of pH 3±0.1 leads to eliminate 14±1% of radionuclides and Th(IV), and 40±3% of Fe(III), while 12±1% of Ln(III) was lost. The developed method shows that more than 95% of the nondesired species was selectively removed when the liquor was eliminated by potassium sulfate or sulfuric acid solutions in presence of Ba/Pb-carrier (1: 1). About 20-83% of Ln(III) was lost when the non-desired species removed by sodium or ammonium sulfate or potassium chromate solutions. Fe(III) interfered with Ln(III) when radionuclides and Th(IV) were eliminated by 2.6M H2SO4 in presence of Ba/Pb-carrier. Finally, use of 0.23M K2SO4 or 2.6M H2SO4 was efficient to reduce level of 228Ra, 226Ra, 223Ra and 210Pb to the safe limits in viewpoint of radiation protection. In addition, the interfered Th(IV) and Fe(III) were also eliminated efficiently from RECl3 liquor before the chemical processing of Ln(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M.B. Pillai, Naturally occurring radioactive material (NORM) in the extraction and processing of rare earths, In: Proceedings of the Fifth International Symposium on Naturally Occurring Radioactive Material (NORM V) organized by University of Seville in cooperation with the International Atomic Energy Agency (IAEA), Spanish Nuclear Safety Council and University of Huelva, pp. 197–221, held in Seville (Spain), 19-22 March 2007.

    Google Scholar 

  2. P.V. Mohandas, S. Soumen and R. Bhattacharya, Radiological issues in monazite processing for rare earth extraction: regulatory approach, In: National Conference on rare earth processing and utilization, pp. 66-67, Mumbai (India), 2-3 May 2014.

    Google Scholar 

  3. A. S. Paschoa, Radioprotection, 44, 957 (2009).

    Article  Google Scholar 

  4. E. H. Borai, M. S. Abd El-Ghany, I. M. Ahmed, M.M. Hamed, A. M. Shahr El-Din and H.F. Aly, Inter. J. Min. Proc., 149, 34 (2016).

    Article  CAS  Google Scholar 

  5. M. H. Mostafa, M. A. Hilal and E. H. Borai, J. Environ. Radioact., 162-163, 166 (2016).

    Article  Google Scholar 

  6. G. Xhixha, G. P. Bezzon, C. Broggini, G. P. Buso, A. Caciolli, I. Callegari, S. De Bianchi, G. Fiorentini, F. Guastaldi, M. Kaçeli Xhixha, F. Mantovani, G. Massa, R. Menegazzo, L. Mou, A. Pasquini, C. Rossi Alvarez and M. Shyti, J. Radioanal. Nucl. Chem., 295, 445 (2013).

    Article  CAS  Google Scholar 

  7. A. Mellodee, A.B. Susan and D. M. Gordon, J. Radioanal. Nucl. Chem., 303, 1393 (2015).

    Article  Google Scholar 

  8. J. Lucas, P. Lucas, T. Le Mercier, A. Rollat and W. Davenport, Extracting rare earth elements from concentrates (Chapter 4, pp. 47-67), in: Rare Earths: Science, Technology, Production and Use, Elsevier, Amsterdam (The Netherlands) (2015).

    Google Scholar 

  9. A. Mellodee, Radionuclide deportment in rare earth processing from monazite and bastnasite using conventional and alternative processing routes, PhD thesis, Sydney University (Australia) (2015).

    Google Scholar 

  10. S.C. Chehreh, M. Rudolph, T. Leistner, J. Gutzmer and A. Peuker Urs, Inter. J. Min. Sci. Technol., 25, 877 (2015).

    Article  Google Scholar 

  11. International Atomic Energy Agency (IAEA), Radiation protection and NORM residue management in the production of rare earths from thorium containing minerals, Safety Reports Series No. 68. IAEA, Vienna (Austria) (2011).

  12. A. S. Bujnovskij, V. Sachkov, P.B. Molokov and A.V. Anufrieva, Key Eng. Mater., 683, 395 (2016).

    Article  Google Scholar 

  13. W.M. Al-Areqi, C. Z. Bahri, A. A. Majid and S. Sarmani, Malaysian J. Anal. Sci., 20, 770 (2016).

    Article  Google Scholar 

  14. M.A. Hilal, E.M. El Afifi and A. A. Nayl, J. Environ. Radioact., 145, 40 (2015).

    Article  CAS  Google Scholar 

  15. E.M. El Afifi, M.A. Hilal and E. H. Borai, J. Environ. Chem. Eng., 3, Part A, 2909 (2015).

    Article  Google Scholar 

  16. V. Strachnov, V. Valkovic, R. Zeisler and R. Dekner, Report on the Intercomparison Run IAEA-314: 226Ra, Th and U in Stream Sediment, International Atomic Energy Agency (IAEA), Vienna (Austria) (1991).

    Google Scholar 

  17. F. Dal-Molin, D.R. Anderson and D. Read, Determination of polonium-210 and lead-210 in iron and steel making materials, In: Environmental Radiochemical Analysis V (Edited by P. Warwick), pp. 175–184, The Royal Society of Chemistry (UK) (2015).

    Chapter  Google Scholar 

  18. B. Maroti, L. Szentmiklosi and T. Belgya, J. Radioanal. Nucl. Chem., 310, 743 (2016).

    Article  CAS  Google Scholar 

  19. S. J. Sartandel, S. K. Jha and R.M. Tripathi, J. Radioanal. Nucl. Chem., 310, 943 (2016).

    Article  CAS  Google Scholar 

  20. K. Kolo, S. A. Binti Abdul Aziz, M.U. Khandaker, K. Asaduzzaman and Y. M. Amin, Environ. Sci Pollut. Res., 22, 13127 (2015).

    Article  CAS  Google Scholar 

  21. L.A. Currie, Anal. Chem., 40, 586 (1968).

    Article  CAS  Google Scholar 

  22. K. Asaduzzaman, M.U. Khandaker, Y.M. Amin, D. A. Bradley, R.H. Mahat and R.M. Nor, J. Environ. Radioact., 135, 120 (2014).

    Article  CAS  Google Scholar 

  23. M.U. Khandaker, P. Jojo, H. Kassim and Y. Amin, Radiat. Prot. Dosim., 152, 33 (2012).

    Article  CAS  Google Scholar 

  24. Z. Marczenko and M. Balcerzak, Separation, Preconcentration and Spectrophotometry in inorganic analysis, pp. 227-477, Elsevier Science B.V., Amsterdam (The Netherlands) (2000).

    Google Scholar 

  25. V. Strachnov, V. Valkovic, R. Zeisler and R. Dekner, Report on the Intercomparison Run IAEA-312: 226Ra, Th and U in Soil, International Atomic Energy Agency (IAEA), Vienna (Austria) (1991).

    Google Scholar 

  26. Guidelines for Canadian Drinking Water Quality (GCDW), Guideline technical document. Radiological parameters prepared by the federal-provincial-territorial committee on drinking water of the federal-provincial-territorial committee on health and the environment, Ottawa, Ontario, 2009 (Cat.: H128-1/10-614E-PDF, ISBN: 978-1-100-16767-1).

  27. World Health Organization (WHO), Guidelines for drinking water quality, 2011. Retried from: http://www.who.int/water_sanitation_ health/publications/2011/9789241548151_ch09.pdf.

  28. United States Environmental Protection Agency (USEPA), Basic information about radionuclides in drinking water, U.S.A. (2013).

  29. Official Journal of European Union (OJEU), Council Directive 2013/51/Euratom of 22October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption, L296/12 (2013).

  30. International Atomic Energy Agency (IAEA), IAEA Safety Standards for Protecting People and the Environment. Radiation Protection and Safety of Radiation Sources, General Safety Requirements No. GSR Part 3, p. 128, IAEA, Vienna (Austria) (2014).

  31. D.W. Shoesmith, The behavior of radium in soil and in uranium (U) mine-tailings, pp. 1–68, White Shell Nuclear Research Establishment. Atomic Energy of Canada Limited, AECL-7818, Canada (1984).

    Google Scholar 

  32. D.R. Lide, CRC Handbook of Chemistry and Physics, 88th Ed., CRC Press, Boca Raton, Florida (USA) (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. El Afifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borai, E.H., El Afifi, E.M. & Shahr El-Din, A.M. Selective elimination of natural radionuclides during the processing of high grade monazite concentrates by caustic conversion method. Korean J. Chem. Eng. 34, 1091–1099 (2017). https://doi.org/10.1007/s11814-016-0350-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0350-9

Keywords

Navigation