Advertisement

Korean Journal of Chemical Engineering

, Volume 34, Issue 3, pp 692–700 | Cite as

Preparation of Cu-MgO catalysts with different copper precursors and precipitating agents for the vapor-phase hydrogenation of furfural

  • Samahe Sadjadi
  • Vahid Farzaneh
  • Samira Shirvani
  • Mohammad GhashghaeeEmail author
Catalysis, Reaction Engineering

Abstract

This article presents the effects of three copper precursors and four precipitating agents on the catalytic performance of the corresponding co-precipitated Cu-MgO catalysts in the vapor-phase hydrogenation of furfural. The chemical and physical properties were analyzed by means of XRD, BET, SEM, and EDX techniques. The nitrate precursor provided the highest performance (conversion of ~89%). Whereas, the catalyst prepared with NaOH was the most efficient (furfuryl alcohol yield of >90%) during 240 min; the most durable conversion (~95%) was assured with Na2-CO3, and the highest selectivity to furfuryl alcohol (>97%) was achieved with K2CO3 as the precipitating agent. The least efficient catalyst (prepared with ammonium carbonate) led to 5-methylfurfural and 2,2-methylenebisfuran as the main byproducts. The major byproducts over the rest of the catalysts included tetrahydrofurfuryl alcohol, furfuryl ether, 1-pentanol, and 2-methylfuran. An increasing trend of furfuryl alcohol selectivity with time-on-stream was evident for all of the catalysts.

Keywords

Hydrogenation Furfural Furfuryl Alcohol Cu-MgO Catalysts Precursor Precipitating Agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11814_2016_344_MOESM1_ESM.pdf (45 kb)
Preparation of Cu-MgO catalysts with different copper precursors and precipitating agents for the vapor-phase hydrogenation of furfural

References

  1. 1.
    S. G. Wettstein, D. M. Alonso, E. I. Gürbüz and J. A. Dumesic, Curr. Opin. Chem. Eng., 1(3), 218 (2012).CrossRefGoogle Scholar
  2. 2.
    K. Ulbrich, The Conversion of Furan Derivatives from Renewable Resources into valuable Building Blocks and their Application in Synthetic Chemistry, PhD Dissertation, University of Regensburg (2014).Google Scholar
  3. 3.
    C. P. Jiménez-Gómez, J. A. Cecilia, D. Durán-Martín, R. Moreno-Tost, J. Santamaría-González, J. Mérida-Robles, R. Mariscal and P. Maireles-Torres, J. Catal., 336, 107 (2016).CrossRefGoogle Scholar
  4. 4.
    M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, K. Wilson, A. F. Lee and G. Kyriakou, Appl. Catal. B: Environ., 180, 580 (2016).CrossRefGoogle Scholar
  5. 5.
    M. J. Climent, A. Corma and S. Iborra, Green Chem., 16(2), 516 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Yan, G. Wu, T. Lafleur and C. Jarvis, Renew Sustainable Energy Rev., 38, 663 (2014).CrossRefGoogle Scholar
  7. 7.
    K. Yan, X. Wu, X. An and X. Xie, Functional Mater. Lett., 6(01), 1350007-1350001-1350007-1350005 (2013), DOI:10. 1142/ S1793604713500070.CrossRefGoogle Scholar
  8. 8.
    H. Zhu, M. Zhou, Z. Zeng, G. Xiao and R. Xiao, Korean J. Chem. Eng., 31(4), 593 (2014).CrossRefGoogle Scholar
  9. 9.
    Q. Yuan, D. Zhang, L. van Haandel, F. Ye, T. Xue, E. J. M. Hensen and Y. Guan, J. Mole. Catal. A: Chem., 406, 58 (2015).CrossRefGoogle Scholar
  10. 10.
    K. Yan and A. Chen, Fuel, 115, 101 (2014).CrossRefGoogle Scholar
  11. 11.
    T. P. Sulmonetti, S. H. Pang, M. T. Claure, S. Lee, D. A. Cullen, P. K. Agrawal and C. W. Jones, Appl. Catal., A, 517, 187 (2016).CrossRefGoogle Scholar
  12. 12.
    A. Halilu, T. H. Ali, A. Y. Atta, P. Sudarsanam, S. K. Bhargava and S. B. Abd Hamid, Energy Fuels, 30, 2216 (2016).CrossRefGoogle Scholar
  13. 13.
    D. Vargas-Hernández, J. M. Rubio-Caballero, J. Santamaría-González, R. Moreno-Tost, J. M. Mérida-Robles, M. A. Pérez-Cruz, A. Jiménez-López, R. Hernández-Huesca and P. Maireles-Torres, J. Mol. Catal. A: Chem., 383-384, 106 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Manikandan, A. K. Venugopal, A. S. Nagpure, S. Chilukuri and T. Raja, RSC Adv., 6(5), 3888 (2016).CrossRefGoogle Scholar
  15. 15.
    B. M. Nagaraja, A. H. Padmasri, B. David Raju and K. S. Rama Rao, J. Mol. Catal. A, 265(1-2), 90 (2007).CrossRefGoogle Scholar
  16. 16.
    R. V. Sharma, U. Das, R. Sammynaiken and A. K. Dalai, Appl. Catal. A, 454, 127 (2013).CrossRefGoogle Scholar
  17. 17.
    M. M. Villaverde, T. F. Garetto and A. J. Marchi, Catal. Commun., 58, 6 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Li, J.-l. Liu, H.-j. Zhou and Y. Fu, ChemSusChem, 9(11), 1339 (2016).CrossRefGoogle Scholar
  19. 19.
    M. Li, Y. Hao, F. Cárdenas-Lizana and M. A. Keane, Catal. Commun., 69, 119 (2015).CrossRefGoogle Scholar
  20. 20.
    K. Yan and A. Chen, Energy, 58, 357 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Kijeński, P. Winiarek, T. Paryjczak, A. Lewicki and A. Mikołajska, Appl. Catal. A, 233(1–2), 171 (2002).CrossRefGoogle Scholar
  22. 22.
    A. B. Merlo, V. Vetere, J. F. Ruggera and M. L. Casella, Catal. Commun., 10(13), 1665 (2009).CrossRefGoogle Scholar
  23. 23.
    K. Yan, J. Liao, X. Wu and X. Xie, RSC Adv., 3(12), 3853 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Li, H. Luo, L. Zhuang, W. Dai and M. Qiao, J. Mole. Catal. A: Chem., 203(1-2), 267 (2003).CrossRefGoogle Scholar
  25. 25.
    M. Lesiak, M. Binczarski, S. Karski, W. Maniukiewicz, J. Rogowski, E. Szubiakiewicz, J. Berlowska, P. Dziugan and I. Witońska, J. Mole. Catal. A: Chem., 395, 337 (2014).CrossRefGoogle Scholar
  26. 26.
    K. An, N. Musselwhite, G. Kennedy, V. V. Pushkarev, L. Robert Baker and G. A. Somorjai, J. Colloid Interface Sci., 392, 122 (2013).CrossRefGoogle Scholar
  27. 27.
    Y. Xu, S. Qiu, J. Long, C. Wang, J. Chang, J. Tan, Q. Liu, L. Ma, T. Wang and Q. Zhang, RSC Adv., 5(111), 91190 (2015).CrossRefGoogle Scholar
  28. 28.
    C. Xu, L. Zheng, J. Liu and Z. Huang, Chin. J. Chem., 29(4), 691 (2011).CrossRefGoogle Scholar
  29. 29.
    B. Zhao, M. Chen, Q. Guo and Y. Fu, Electrochim. Acta, 135, 139 (2014).CrossRefGoogle Scholar
  30. 30.
    K. Fulajtárova, T. Soták, M. Hronec, I. Vávra, E. Dobročka and M. Omastová, Appl. Catal. A: Gen., 502, 78 (2015).CrossRefGoogle Scholar
  31. 31.
    Y. Nakagawa, K. Takada, M. Tamura and K. Tomishige, ACS Catal., 4(8), 2718 (2014).CrossRefGoogle Scholar
  32. 32.
    B. M. Nagaraja, A. H. Padmasri, B. D. Raju and K. S. Rama Rao, Int. J. Hydrogen Energy, 36(5), 3417 (2011).CrossRefGoogle Scholar
  33. 33.
    O. F. Aldosari, S. Iqbal, P. J. Miedziak, G. L. Brett, D. R. Jones, X. Liu, J. K. Edwards, D. J. Morgan, D. K. Knight and G. J. Hutchings, Catal. Sci. Technol., 6(1), 234 (2016).CrossRefGoogle Scholar
  34. 34.
    B. M. Nagaraja, V. S. Kumar, V. Shasikala, A. H. Padmasri, B. Sreedhar, B. D. Raju and K. S. Rao, Catal. Commun., 4(6), 287 (2003).CrossRefGoogle Scholar
  35. 35.
    H. Cui, X. Wu, Y. Chen, J. Zhang and R. I. Boughton, Mater. Res. Bulletin, 61, 511 (2015).CrossRefGoogle Scholar
  36. 36.
    A. J. Estrup, Selective Hydrogenation of Furfural to Furfuyl Alcohol over Copper Magnesium Oxide. MSc, University of Maine (2015).Google Scholar
  37. 37.
    H. Liu, Q. Hu, G. Fan, L. Yang and F. Li, Catal. Sci. Technol., 5(8), 3960 (2015).CrossRefGoogle Scholar
  38. 38.
    C.-Y. Lu, M.-Y. Wey and Y.-H. Fu, Appl. Catal. A: Gen., 344(1-2), 36 (2008), DOI:http://dx.doi.org/10.1016/j.apcata.2008.03.036.CrossRefGoogle Scholar
  39. 39.
    M. P. Pachamuthu, V. V. Srinivasan, R. Maheswari, K. Shanthi and A. Ramanathan, Catal. Sci. Technol., 3(12), 3335 (2013).CrossRefGoogle Scholar
  40. 40.
    J. R. Jensen, T. Johannessen and H. Livbjerg, Appl. Catal. A: Gen., 266(1), 117 (2004).CrossRefGoogle Scholar
  41. 41.
    Z. Huang, H. Liu, F. Cui, J. Zuo, J. Chen and C. Xia, Catal. Today, 234, 223 (2014).CrossRefGoogle Scholar
  42. 42.
    T. R. Motjope, H. T. Dlamini, G. R. Hearne and N. J. Coville, Catal. Today, 71(3), 335 (2002).CrossRefGoogle Scholar
  43. 43.
    S. Mallik, S. S. Dash, K. M. Parida and B. K. Mohapatra, J. Colloid Interface Sci., 300(1), 237 (2006).CrossRefGoogle Scholar
  44. 44.
    D. Liu, D. Zemlyanov, T. Wu, R. J. Lobo-Lapidus, J. A. Dumesic, J. T. Miller and C. L. Marshall, J. Catal., 299, 336 (2013).CrossRefGoogle Scholar
  45. 45.
    H. Zhang, C. Canlas, A. J. Kropf, J. W. Elam, J. A. Dumesic and C. L. Marshall, J. Catal., 326, 172 (2015).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2017

Authors and Affiliations

  • Samahe Sadjadi
    • 1
    • 2
  • Vahid Farzaneh
    • 2
    • 3
  • Samira Shirvani
    • 2
    • 3
  • Mohammad Ghashghaee
    • 2
    • 3
    Email author
  1. 1.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Biomass Conversion Science and Technology (BCST) DivisionIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations