Skip to main content

Advertisement

Log in

Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization

  • The 11th Korea-China Clean Energy Workshop
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The regeneration of the CO2 capture system is the most energy-intensive process associated with CO2 capture because high temperatures are required to desorb CO2 from the absorbent. We propose a single process for effective CO2 capture and mineralization as a substitute for desorption of absorbed CO2, producing high value-added CaCO3. A saturated 2-amino-2-methyl-1-propanol (AMP) solution was used as a carbonate source, and calcium chloride (CaCl2) was used as a calcium ion source to precipitate CaCO3. A semi-batch reactor was used to investigate the effects of the mixing rate, temperature, and amount of calcium added during the CaCO3 precipitation process. During the mineralization reaction, the absorbed CO2 in AMP solution instantly converted into white CaCO3 precipitant with 97.4% conversion. The stirring rate provided a reciprocal effect on the crystal size, whereas the temperature and Ca/CO2 molar ratio appeared to affect the crystal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lucquiaud and J. Gibbins, Chem. Eng. Res. Des., 89, 1553 (2011).

    Article  CAS  Google Scholar 

  2. M. Wang, A. Lawal, P. Stephenson, J. Sidders and C. Ramshaw, Chem. Eng. Res. Des., 89, 1609 (2011).

    Article  CAS  Google Scholar 

  3. J. Lim, D. H. Kim, Y. Yoon, S. K. Jeong, K. T. Park and S. C. Nam, Energy Fuels, 26, 3910 (2012).

    Article  CAS  Google Scholar 

  4. S. S. Warudkar, K. R. Cox, M. S Wong and G. J. Hirasaki, Int. J. Greenh. Gas. Con., 16, 342 (2013).

    Article  CAS  Google Scholar 

  5. H. Dang and G. T. Rochelle, Sep. Sci. Technol., 38, 337 (2003).

    Article  CAS  Google Scholar 

  6. S. Bishnoi and G. T. Rochelle, AIChE J., 48, 2788 (2002).

    Article  CAS  Google Scholar 

  7. S. Bishnoi and G. T. Rochelle, Ind. Eng. Chem. Res., 41, 604 (2002).

    Article  CAS  Google Scholar 

  8. G. Sartori, W. S. Ho, D. W. Savage, G. R. Chludzinski and S. Wiechert, Sep. Purif. Methods, 16, 171 (1986).

    Article  Google Scholar 

  9. J. M. Beér, Prog. Energy Combust. Sci., 26, 301 (2000).

    Article  Google Scholar 

  10. J. M. Beér, Prog. Energy Combust. Sci., 33, 107 (2007).

    Article  Google Scholar 

  11. M. Karimi, M. Hillestad and H. F. Svendsen, Energy Procedia, 4, 1601 (2011).

    Article  CAS  Google Scholar 

  12. D. H. Van Wagener and G. T. Rochelle, Chem. Eng. Res. Des., 89, 1639 (2011).

    Article  Google Scholar 

  13. Y. Le Moullec and M. Kanniche, Int. J. Greenh. Gas Con., 5, 727 (2011).

    Article  Google Scholar 

  14. T. Neveux, Y. Le Moullec, J. P. Corriou and E. Favre, E. Chem. Eng. Trans., 35, 337 (2013).

    Google Scholar 

  15. B. A. Oyenekan and G. T. Rochelle, AIChE J., 53, 3144 (2007).

    Article  CAS  Google Scholar 

  16. I. L. Leites, D. A. Sama and N. Lior, Energy, 28, 55 (2003).

    Article  Google Scholar 

  17. R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas and D Gelowitz, Ind. Eng. Chem. Res., 45, 2414 (2006).

    Article  CAS  Google Scholar 

  18. C. Domingo, E. Loste, J. Gómez-Morales, J. García-Carmona and J. Fraile, J. Supercrit. Fluid, 36, 202 (2006).

    Article  CAS  Google Scholar 

  19. A. Sanna, M. Dri, M. R. Hall and M. Maroto-valer, Appl. Energy, 99, 545 (2012).

    Article  CAS  Google Scholar 

  20. B. M. Bhanage and M. Arai, Transformation and Utilization of Carbon Dioxide, Springer Berlin Heidelberg, Berlin (2014).

    Book  Google Scholar 

  21. M. Popescu, R. Isopescu, C. Matei, G. Fagarasan and V. Plesu, Adv. Powder Technol., 25, 500 (2014).

    Article  CAS  Google Scholar 

  22. T. Thriveni, N. Um, S.-Y. Nam, Y. J Ahn, C. Han and J. W. Ahn, Korean Chem. Soc., 51, 107 (2014).

    CAS  Google Scholar 

  23. J. G. Carmona, G. Morales and R. J. Rodríguez, Colloid Interface Sci., 261, 434 (2003).

    Article  Google Scholar 

  24. M. Ukrainczyk, J. Kontrec, V. Babić-Ivančić, L. Brečević and D. Kralj, Powder Technol., 171, 192 (2007).

    Article  CAS  Google Scholar 

  25. B. Feng, A. K. Yong and H. An, Mater. Sci. Eng., 445, 170 (2007).

    Article  Google Scholar 

  26. M. Vucak, J. Peric, M. N. Pons and S. Chanel, Powder Technol., 101, 1 (1999).

    Article  CAS  Google Scholar 

  27. G. Draz, J. Prah and J. Mac, J. Cryst. Growth, 324, 229 (2011).

    Article  Google Scholar 

  28. M. Vinoba, M. Bhagiyalakshmi, A. N. Grace, D. H. Chu, S. C. Nam, Y. Yoon, S. H. Yoon and S. K. Jeong, Langmuir, 29, 15655 (2013).

    Article  CAS  Google Scholar 

  29. M. Vinoba, M. Bhagiyalakshmi, S. Y. Choi, K. T. Park, H. J. Kim and S. K. Jeong, J. Phys. Chem., 118, 17556 (2014).

    CAS  Google Scholar 

  30. B. B. Schroeder, D. D. Harris, S. T. Smith and D. O. Lignell, Cryst. Growth Des., 14, 1756 (2014).

    Article  CAS  Google Scholar 

  31. M. Torbacke and Å. C. Rasmuson, AIChE J., 50, 3107 (2004).

    Article  CAS  Google Scholar 

  32. R. Beck and J.-P. Andreassen, AIChE J., 58, 107 (2012).

    Article  CAS  Google Scholar 

  33. M. Kitamura, Cryst. Eng. Comm., 11, 949 (2009).

    Article  CAS  Google Scholar 

  34. A. M. López-periago, R. Pacciani, C. García-gonzález, L. F. Vega and C. Domingo, J. Supercrit. Fluid, 52, 298 (2010).

    Article  Google Scholar 

  35. Y. E. Kim, J. A. Lim, S. K. Jeong, Y. I. Yoon, S. T. Bae and S. C. Nam, Bull. Korean Chem. Soc., 34, 783 (2013).

    Article  CAS  Google Scholar 

  36. A. M. Shariff, G. Murshid, K. K. Lau, M. A. Bustam and F. Ahmad, World Acad Sci. Eng. Technol., 60, 1050 (2011).

    Google Scholar 

  37. M. Kitamura, J. Cryst. Growth, 239, 2205 (2002).

    Article  Google Scholar 

  38. C. Y. Tai, P. Chen and S. Shih, AIChE J., 39, 1472 (1993).

    Article  CAS  Google Scholar 

  39. J. Kawano, N. Shimobayashi, M. Kitamura and K. Shinoda, J. Cryst. Growth, 239, 419 (2002).

    Article  Google Scholar 

  40. J. Schlomach, K. Quarch and M. Kind, Chem. Eng. Technol., 29, 215 (2006).

    Article  Google Scholar 

  41. H. D. Keith and F. J. Padden Jr., J. Appl. Phys., 34, 2409 (1963).

    Article  CAS  Google Scholar 

  42. J. W. Ahn, J. H. Kim, H. S. Park, J. A. Kim, C. Han and H. Kim, Korean J. Chem. Eng., 22, 852 (2005).

    Article  CAS  Google Scholar 

  43. T. Jung, W. Kim and C. K. Choi, Cryst. Res. Technol., 40, 586 (2005).

    Article  CAS  Google Scholar 

  44. Y. S. Han, G. Hadiko, M. Fuji and M. Takahashi, J. Cryst. Growth, 276, 541 (2005).

    Article  CAS  Google Scholar 

  45. O. Söhnel and J. W. Mullin, J. Cryst. Growth, 60, 239 (1982).

    Article  Google Scholar 

  46. J. A. Onimisi, R. Ismail, K. S. Ariffin, N. Baharun and H. Bin Hussin, Korean J. Chem. Eng., 33, 2756 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Kwan Jeong.

Additional information

This paper is reported in the 11th China-Korea Clean Energy Workshop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murnandari, A., Kang, J., Youn, M.H. et al. Effect of process parameters on the CaCO3 production in the single process for carbon capture and mineralization. Korean J. Chem. Eng. 34, 935–941 (2017). https://doi.org/10.1007/s11814-016-0340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0340-y

Keywords

Navigation