Skip to main content
Log in

Two-stage cracking catalyst of amorphous silica-alumina on Y zeolite for enhanced product selectivity and suppressed coking

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel bilayer catalyst composed of amorphous silica-alumina (ASA) layer coated on Y zeolite layer is proposed as a fluid catalytic cracking (FCC) catalyst to cause two-stage reactions of pre-cracking and deep-cracking. The bilayer catalyst (Y/ASA) is compared with the usual mixed one (ASA+Y), in catalytic cracking of a feed composed of 1,3,5-triisopropylbenzene and naphthalene. The two catalyst representations were prepared by applying layers of Y zeolite and ASA or both on inert monolith supports. Catalytic cracking experiments were carried out at 300, 350 and 400 °C. Compared to Y+ASA, Y/ASA yielded about 33% and 46% more benzene and toluene, respectively, and 18% less coke in the catalytic cracking at 350 oC. The coke of Y/ASA was less refractory than that of Y+ASA as burnt at lower temperatures, while emitting less carbon monoxide in regeneration. Y/ASA configuration shows promising features as FCC catalysts for increased bottoms cracking and suppressed coking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sadeghbeigi, Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units, Elsevier (2012).

    Google Scholar 

  2. W.C. Cheng, E.T. Habib, K. Rajagopalan, T.G. Roberie, R.F. Wormsbecher and M. S. Ziebarth, Fluid catalytic cracking, Handbook of Heterogeneous Catalysis (2008).

    Google Scholar 

  3. Z. Li, G. Wang, Y. Liu, J. Gao, C. Xu, Y. Liang and X. Wang, Fuel Process. Technol., 115, 1 (2013).

    Article  Google Scholar 

  4. G. Wang, Z.-k. Li, Y.-D. Liu, J.-s. Gao, C.-m. Xu, X.-y. Lan, G.-q. Ning and Y.-m. Liang, Ind. Eng. Chem. Res., 51, 2247 (2012).

    Article  CAS  Google Scholar 

  5. G. Jiménez-García, H. de Lasa, R. Quintana-Solórzano and R. Maya-Yescas, Fuel, 110, 89 (2013).

    Article  Google Scholar 

  6. P. O’Connor and S. Yanik, Stud. Surf. Sci. Catal., 100, 323 (1996).

    Article  Google Scholar 

  7. T. Ino and S. Al-Khattaf, Appl. Catal. A: Gen., 142, 5 (1996).

    Article  CAS  Google Scholar 

  8. W. Chen, D. Han, X. Sun and C. Li, Fuel, 106, 498 (2013).

    Article  CAS  Google Scholar 

  9. F. Leydier, C. Chizallet, A. Chaumonnot, M. Digne, E. Soyer, A.-A. Quoineaud, D. Costa and P. Raybaud, J. Catal., 284, 215 (2011).

    Article  CAS  Google Scholar 

  10. I. Shimada, K. Takizawa, H. Fukunaga, N. Takahashi and T. Takatsuka, Fuel, 161, 207 (2015).

    Article  CAS  Google Scholar 

  11. K.-H. Lee and B.-H. Ha, Korean J. Chem. Eng., 15, 533 (1998).

    Article  CAS  Google Scholar 

  12. B. Wang, C. Han, Q. Zhang, C. Li, C. Yang and H. Shan, Energy Fuels, 29, 5701 (2015).

    Article  CAS  Google Scholar 

  13. N. Hosseinpour, Y. Mortazavi, A. Bazyari and A. A. Khodadadi, Fuel Process. Technol., 90, 171 (2009).

    Article  CAS  Google Scholar 

  14. L. Jia, X. Sun, X. Ye, C. Zou, H. Gu, Y. Huang, G. Niu and D. Zhao, Micropor. Mesopor. Mater., 176, 16 (2013).

    Article  CAS  Google Scholar 

  15. X. Liu, T. Yang, P. Bai and L. Han, Micropor. Mesopor. Mater., 181, 116 (2013).

    Article  CAS  Google Scholar 

  16. M. Aghakhani, A. Khodadadi, S. Najafi and Y. Mortazavi, J. Ind. Eng. Chem., 20, 3037 (2014).

    Article  CAS  Google Scholar 

  17. A. Psarras, E. Iliopoulou, L. Nalbandian, A. Lappas and C. Pouwels, Catal. Today, 127, 44 (2007).

    Article  CAS  Google Scholar 

  18. A. Bazyari, A. Khodadadi, N. Hosseinpour and Y. Mortazavi, Fuel Process. Technol., 90, 1226 (2009).

    Article  CAS  Google Scholar 

  19. G. Tonetto, J. Atias and H. De Lasa, Appl. Catal. A: Gen., 270, 9 (2004).

    Article  CAS  Google Scholar 

  20. S. Al-Khattaf, J. Atias, K. Jarosch and H. De Lasa, Chem. Eng. Sci., 57, 4909 (2002).

    Article  CAS  Google Scholar 

  21. S. Al-Khattaf, T. Odedairo and R. Balasamy, Can. J. Chem. Eng., 91, 607 (2013).

    Article  CAS  Google Scholar 

  22. M. Falco, E. Morgado, N. Amadeo and U. Sedran, Appl. Catal. A: Gen., 315, 29 (2006).

    Article  CAS  Google Scholar 

  23. K. Mahgoub and S. Al-Khattaf, Energy Fuels, 19, 329 (2005).

    Article  CAS  Google Scholar 

  24. R. Pujro, M. Falco and U. Sedran, Energy Fuels, 29, 1543 (2015).

    Article  CAS  Google Scholar 

  25. G.m. Chen, X.w. Zhang and Z. t. Mi, J. Fuel. Chem. Technol., 35, 211 (2007).

    Article  CAS  Google Scholar 

  26. P. Andreu, Catal. Lett., 22, 135 (1993).

    Article  CAS  Google Scholar 

  27. A. E. Beers, T. Nijhuis, N. Aalders, F. Kapteijn and J. Moulijn, Appl. Catal. A: Gen., 243, 237 (2003).

    Article  CAS  Google Scholar 

  28. J.M. Zamaro, M. A. Ulla and E. E. Miró, Chem. Eng. J., 106, 25 (2005).

    Article  CAS  Google Scholar 

  29. A. Beers, T. Nijhuis, F. Kapteijn and J. Moulijn, Micropor. Mesopor. Mater., 48, 279 (2001).

    Article  CAS  Google Scholar 

  30. J.R. Sohn, S. J. DeCanio, P.O. Fritz and J.H. Lunsford, J. Phys. Chem., 90, 4847 (1986).

    Article  CAS  Google Scholar 

  31. N. Katada, Y. Kageyama and M. Niwa, J. Phys. Chem. B, 104, 7561 (2000).

    Article  CAS  Google Scholar 

  32. A. F. Costa, H. S. Cerqueira, E. F. Sousa-Aguiar and M. M. Ludvig, Performance of FCC catalysts prepared with sub-micron Y zeolite, in: M. C. E. van Steen, L. H. Callanan (Eds.) Studies in Surface Science and Catalysis, Elsevier, 2296 (2004).

    Google Scholar 

  33. S. Sombatchaisak, P. Praserthdam, C. Chaisuk and J. Panpranot, Ind. Eng. Chem. Res., 43, 4066 (2004).

    Article  CAS  Google Scholar 

  34. M.M. Kerssens, C. Sprung, G.T. Whiting and B.M. Weckhuysen, Micropor. Mesopor. Mater., 189, 136 (2014).

    Article  CAS  Google Scholar 

  35. S. Al-Khattaf and H. De Lasa, Appl. Catal. A: Gen., 226, 139 (2002).

    Article  CAS  Google Scholar 

  36. L. Frunz, R. Prins and G.D. Pirngruber, Micropor. Mesopor. Mater., 88, 152 (2006).

    Article  CAS  Google Scholar 

  37. T.-C. Tsai, S.-B. Liu and I. Wang, Appl. Catal. A: Gen., 181, 355 (1999).

    Article  CAS  Google Scholar 

  38. S. Al-Khattaf, Energy Fuels, 22, 3612 (2008).

    Article  CAS  Google Scholar 

  39. P. O’Connor, J. Verlaan and S. Yanik, Catal. Today, 43, 305 (1998).

    Article  Google Scholar 

  40. B. Wang and G. Manos, Chem. Eng. J., 142, 217 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Khodadadi.

Electronic supplementary material

11814_2016_327_MOESM1_ESM.pdf

Two-stage cracking catalyst of amorphous silica-alumina on Y zeolite for enhanced product selectivity and suppressed coking

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodpour, M., Tafreshi, R., Khodadadi, A.A. et al. Two-stage cracking catalyst of amorphous silica-alumina on Y zeolite for enhanced product selectivity and suppressed coking. Korean J. Chem. Eng. 34, 681–691 (2017). https://doi.org/10.1007/s11814-016-0327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0327-8

Keywords

Navigation