Skip to main content
Log in

Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Amphiphilic scleroglucans were synthesized by grafting hydrophobic stearate groups in various densities onto the polysaccharide under its triple-helix conformation. Furthermore, a polyelectrolyte was obtained by attaching ionic-sulfonic groups to the hydrophobically modified scleroglucan. Rheological measurements demonstrated the role of grafted stearates in helix-coil transition of scleroglucan and in reducing the viscosity of scleroglucan in pure aqueous and brine solutions. Nevertheless, grafting the ionic-sulfonic groups caused a substantial recovery of the lost viscosity, especially in brine solution at 90 °C, while keeping the amphiphilic character of the hydrophobically modified scleroglucan. Additionally, the hydrophobic modification altered the adsorption behavior of scleroglucan on oil-reservoir rock surfaces: the higher the grafting density, the greater the adsorption amount. However, the polyelectrolyte sample showed the lowest adsorption among all modified samples. Finally, the modified scleroglucans are promising candidates for enhanced oil recovery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Lee, H. J. Jeong, D.W. Kim and K.Y. Lee, Macromol. Res., 216, 429 (2008).

    Article  Google Scholar 

  2. X. Chen, L. Zhang and P. C. K. Cheung, Int. Immunopharmacol., 10, 398 (2010).

    Article  CAS  Google Scholar 

  3. L. Yang, T. Zhao, H. Wei, M. Zhang, Y. Zou, G. Mao and X. Wu, Int. J. Biol. Macromol., 49, 1124 (2011).

    Article  CAS  Google Scholar 

  4. M. S. Kamal, A. S. Sultan, U. A. Al-Mubaiyedh and I. A. Hussein, Polym. Rev., 55, 491 (2015).

    Article  CAS  Google Scholar 

  5. A. L. Kjøniksen, N. Beheshti, H. K. Kotlar, K. Zhu and B. Nyström, Euro. Polym. J., 44, 959 (2008).

    Article  Google Scholar 

  6. B. Nyström, A. L. Kjøniksen and C. Iversen, Adv. Colloid Interface Sci., 79, 81 (1999).

    Article  Google Scholar 

  7. S. Alban, A. Schauerte and G. Franz, Carbohydr. Polym., 47, 267 (2002).

    Article  CAS  Google Scholar 

  8. S.C. Viñarta, O.D. Delgado, L. I. Figueroa and J. I. Fariña, Carbohydr. Polym., 94, 496 (2013).

    Article  Google Scholar 

  9. T. L. Bluhm, Y. Deslandes, R. H. Marchessault, S. Pérez and M. Rinaudo, Carbohydr. Res., 100, 117 (1982).

    Article  CAS  Google Scholar 

  10. M. Sletmoen and B. T. Stokke, Biopolymers, 89, 310 (2008).

    Article  CAS  Google Scholar 

  11. F. Marchetti, M. Bergamin, S. Bosi, R. Khan, E. Murano and S. Norbedo, Carbohydr. Polym., 75, 670 (2009).

    Article  CAS  Google Scholar 

  12. V. Crescenzi, A. Gamini, R. Rizzo and S.V. Meille, Carbohydr. Polym., 9, 169 (1988).

    Article  CAS  Google Scholar 

  13. M. Grassi, R. Lapasin, T. Coviello, P. Matricardi, C.D. Meo and F. Alhaique, Carbohydr. Polym., 78, 377 (2009).

    Article  CAS  Google Scholar 

  14. R. Rivenq, A. Donche and C. Noik, SPE Reserv. Eng., 7, 15 (1992).

    Article  CAS  Google Scholar 

  15. S.A. Survase, P. S. Saudagar, I.B. Bajaj and R. S. Singhal, Food Technol. Biotechnol., 45, 107 (2007).

    CAS  Google Scholar 

  16. S. Mishra, A. Bera and A. Mandal, J. Petrol. Eng., Article ID 395857 (2014).

    Google Scholar 

  17. A. Mandal, Int. J. Oil, Gas Coal Tech., 9, 241 (2015).

    Article  Google Scholar 

  18. Y. Cao and H. Li, Euro. Polym. J., 38, 1457 (2002).

    Article  CAS  Google Scholar 

  19. K. Babu, N. Pal, V. K. Saxena and A. Mandal, Korean J. Chem. Eng., 33, 711 (2016).

    Article  CAS  Google Scholar 

  20. G. Sodeifian, R. Daroughegi and J. Aalaie, Korean J. Chem. Eng., 32, 2484 (2015).

    Article  CAS  Google Scholar 

  21. W. Chai, Y. Zhang and Y. Hou, Polym. Chem., 4, 1006 (2013).

    Article  CAS  Google Scholar 

  22. S.V. Chichkanov, V. E. Proskurina and V.A. Myagchenkov, Chemistry and Computational Simulation. Butlerov Communications., 3, 33 (2002).

    Google Scholar 

  23. D. S. Pierce, Mechanics of Impression Evidence., CRC Press (2011).

    Book  Google Scholar 

  24. A.C. Spivey and S. Arseniyadis, Angew. Chem. Int. Ed., 43, 5436 (2004).

    Article  CAS  Google Scholar 

  25. J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, 2nd Ed. (2007).

    Google Scholar 

  26. A.E. J. de Nooy, V. Rori, G. Masci and M. Dentini, Vittorio Crescenzi Carbohydr. Res., 324, 116 (2000).

    Article  CAS  Google Scholar 

  27. M. Feeney, M. Antonietta Casadei and P. Matricardi, J. Mater. Sci: Mater. Med., 20, 1081 (2009).

    CAS  Google Scholar 

  28. A. Roy, S. Comesse, M. Grisel, N. Hucher, Z. Souguir and F. Renou, Biomacromolecules, 15, 1160 (2014).

    Article  CAS  Google Scholar 

  29. I. Colinet, L. Picton, G. Muller and D. LeCerf, Carbohydr. Polym., 69, 65 (2007).

    Article  CAS  Google Scholar 

  30. X. Xu, X. Wang, F. Cai and L. Zhang, Carbohydr. Res., 345, 419 (2010).

    Article  CAS  Google Scholar 

  31. T. Norisuye, T. Yanaki and H. Fujita, J. Polym. Sci., Polym. Phys., 18, 547 (1980).

    Article  CAS  Google Scholar 

  32. A. Durand, Euro. Polym. J., 43, 1744 (2007).

    Article  CAS  Google Scholar 

  33. G. Strobl, The Physics of Polymers, Springer, Berlin (2007).

    Google Scholar 

  34. J. Aalaie, M. Hemmati and V. A. Sajjadian, J. Macromol. Sci. Phys., 51, 2473 (2012).

    Article  CAS  Google Scholar 

  35. W.M. Kulicke, A. I. Lettau and H. Thielking, Carbohydr. Res., 297, 135 (1997).

    Article  CAS  Google Scholar 

  36. J. L. Zatz and S. Knapp, J. Pharm. Sci., 73, 468 (1984).

    Article  CAS  Google Scholar 

  37. A.A. Alquraishi and F.D. Alsewailem, Carbohydr. Polym., 88, 859 (2012).

    Article  CAS  Google Scholar 

  38. B. B. Lee, P. Ravindra and E. S. Chan, Colloids Surf., A. Physicochem. Eng. Asp., 332, 112 (2009).

    Article  CAS  Google Scholar 

  39. A. Docoslis, R. F. Giese and C. J. van Oss, Colloids Surf., B., 19, 147 (2000).

    Article  CAS  Google Scholar 

  40. I. Nahringbauer, J. Colloid Interf. Sci., 176, 318 (1995).

    Article  CAS  Google Scholar 

  41. C. Brunchi, M. Bercea, S. Morariu and M. Dascalu, J. Polym. Res., 23, 123, (2016).

    Article  Google Scholar 

  42. P.T. Starkey, H.T. Davis, M.V. Tirrell, J. F. Argillier, A. Audibert and J. Lecourtier, in Associative Polymers in Aqueous Media, J. E. Glass (Ed.), ACS Symposium Series (2000).

  43. N. B. Wyatt, C.M. Gunther and M.W. Liberatore, Polymer, 52, 2437 (2011).

    Article  CAS  Google Scholar 

  44. J. F. Argillier, A. Audibert, J. Lecourtier, M. Moan and L. Rousseau, Colloids Surf., A. Physicochem. Eng. Asp., 113, 247 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Sharif or Jamal Aalaie.

Additional information

Equal contribution.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, M., Ozeiri, M., Sharif, A. et al. Effect of hydrophobic modification on the structure and rheology of aqueous and brine solutions of scleroglucan polymer. Korean J. Chem. Eng. 34, 903–912 (2017). https://doi.org/10.1007/s11814-016-0322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0322-0

Keywords

Navigation